CDN Judo : Breaking the CDN DoS
Protection with Itself

Run Guo, Weizhong Li, Baojun Liu, Shuang Hao,
Jia Zhang, Haixin Duan, Kaiwen Shen, Jianjun Chen, Ying Liu

< /7 /’/—\}/',’/ . Vr’/"—\‘\\"’
/ N
t‘\\{/ \ \‘/‘/‘f |
</ N
| J
d N /
{ (N v 1 \
\] [
N/ A

https://www.jianjunchen.com/

Content Delivery Network

+ Infrastructure for access acceleration and DoS defense
> 38.98% of top 10K websites use CDN [Your Remnant Tells Secret-DSN’18]
> We find CDN 1tself can be abuse to break 1ts DoS protection

— o ——

00O

A
- & | : l
[-) I
: == :):
i CDN Origin

CDN Forwarding Process

End-to-end connection | ——> | Front-end and back-end connections

GET /index.php GET /index.php
E Host: demo.com (’5 Host: demo.com
...... ' =9
=) | Front-end — Back-end ,:
-

Client CDN Origin

Previous Works

. . CDN internal security

Front-end connection security [Forwarding loop attack, NDSS *16]

[HTTPS meet CDN, IEEE S&P °14] :

[TLS private key sharing, CCS *16]

[Host of troubles, CCS *16] Back-end connection security

[Cache fallen, CCS *19] [Protection or Threat, ESORICS °(09]

[End user maneuvered, USENIX security *18]

[Cached and Confused, USENIX security ’20] Origin IP exposure
[CloudPiercer, CCS *15]
Remdual Resolution, DSN *18]

)

Back-end 1 ,:

CDN Origin

HiD >

Front-end

Our work: abuse CDN-forwarded requests to attack the origin.

Our Work

+ Exploiting CDN forwarding features to attack the origin

HTTP/2 amplification attack

aile e Pre-POST slow HTTP attack

selesi Egress IP blocking attack

_ o 2
"1 amazon ~CDNsun

ervices CLOUDFLARE

fastly 10lkeycdn maxcon |

Attack-1
HTTP/2 Amplification Attack

HTTP/2 Protocol

Designed to improve HTTP performance
> RFC7540, released 1n 2015

Compression (to reduce header redundancy)
» Binary protocol, HPACK header compression

Connection reuse (to reduce TCP connections)

Request -> Stream

Streams are multiplexed

O Deployment: Over 43.2% of Alexa top 1M websites (w3techs.com, 12 Feb 2020)

Concept of HTTP/2 Amplification attack

+ Our study
>Identify that HTTP/2-1.1 conversion of CDN will cause amplification attack.
>Improve the attack with the feature of Huffman encoding.

> Real-world measurement and evaluation

Protocol conversion

HTTP/2 > HTTP/1.1 B one http request
5 @ HEN
S = 3
. Back-end |
Attacker Front-end CDN ack-en Origin

2 [HTTP/2 Tsunami Attack, EST *17]
Show bandwidth amplification attack in local proxies built with Nginx and Nghttp2.

CDN Vendors Claim to Support HTTP/2

+ HTTP/2 1s supported by most major CDNSs
% The backend connection still uses HTTP/1.1

Frontend Default on Default on Default Default off Default on Default on
Connection Configurable on Configurable Configurable
Backend
Connection Only support HTTP/1.1

Next we describe three amplification attack techniques. 9

Raw Request

HPACK Static Table

+ An indexed table of common header fields
+ pre-defined in both HTTP/2 client and server.

GET / HTTP/1l.1
host: demo.com
scheme: https

49 Bytes

AW N =

61

Static Table
:authority
:method GET
:method POST
:path /
:scheme https

www-authenticate

Encoded Data

demo.com

N =~ B DN

11 Bytes

10

Attack-1.1: Using HPACK Static Table

+ HTTP/2-1.1 conversion of CDN causes a bandwidth amplification.

49 Bytes

2 11 Bytes
4 GET / HTTP/1.1
1 demo.com host: demo.com Q
7 scheme: https
& (=
=
r A HTTP/2 E-I HTTP/1.1 ,:
Attacker CDN Origin

Bandwidth amplification factor: 49B / 11B = 4.45

11

HPACK Dynamic Table (1/2)

+ An 1ndexed table of previously seen headers to avoid repeatedly

transferring headers.

>Step 1: The firstly seen headers will be mserted into the dynamic table.

Request1

:method: GET

:path: /

:authority: demo.com
:scheme: https
cookiel: X..X(2000B)
cookieZ: X..X(1968B)

4042 Bytes

62
63

Static Table

:method GET
cookiel X...X (2000B)

cookie 2 X...X (1968B)
Dynamic Table

Encoded Data

>

7
cookiel X...X

cookie? X...X

3999 Bytes
12

HPACK Dynamic Table (2/2)

+ An 1ndexed table of previously seen headers to avoid repeatedly
transferring headers.

>Step 2: The subsequently repeated headers will be substituted as an index.

Request 2 Encoded Data
Static Table

:method: GET 2
:path: / 2 :method GET 4
rauthority: demo.com 62 cookiel X...X (2000B) i
:scheme: https .

cookiel: X..X(2000B) 63 cookie 2 X...X (1968B) 62
cookie2: X..X(1968B) Dynamic Table 63

4042 Bytes S Bytes

13

Attack-1.2: Using HPACK Dynamic Table

+ The dynamic table enhances this kind of bandwidth amplification.

3999 Bytes 4039 Bytes
Req 1|2 4 1 XXXXXXXXXXXXX |x 1 GET / HTTP/1.1
host: demo.com
5 Bytes scheme: https X (N+1)
cookiel: X...X (2000B)
Req 2-ReqN+1|2 4 1 62 63 x N cookie2: X...X (1968B)
e ®
HTTP/2 HTTP/1.1
Attacker CDN Origin
: : : 4039 + 4039N
Bandwidth amplification factor: 4039B % (N+1) /3999B + 5B X N = 3999 1 5N

For example, when N 1s 100, the factor 1s 88.70.
14

Attack-1.3: Improve with Huffman Encoding

+ Some special characters can have short Huffman encodings

>The Huffman encoding of ‘X’ 1s 8 bits in length.

>Characters {0, 1, 2, a, c, e, 1, 0, s, t} have the shortest Huffman encoding (5 bits).

Request 1

Encoded Data

:method: GET

:path: /

:authority: demo.com
:scheme: https
cookiel: X..X(2000B)
cookie2: X..X(1968B)

¥

:method: GET

:path: /

:authority: demo.com
:scheme: https
cookiel: a..a(2000B)
cookie?: a..a(l1l968B)

82 84 ... fc (3999B)

¥

82 84 ... 63 (2511B)

15

Attack-1.3: Improve with Huffman Encoding

+ The shorter the Huffman encoding, the larger the amplification factor.

Character X 3 4039 + 4039N 88.70
aracter 15 3999 + 5N when N is 100

. , 4039 + 4039N IRRIEE
Character ‘a 5 bits 2511 1 5N when N is 100

Note: N 1s the concurrent streams in the same HTTP/2 connection.

16

Bandwidth Amplification Evaluation

+ Create multiple concurrent requests in one HTTP/2 connection.
>The amplification factor grows with the number of concurrent streams.

>The max factor 1s got at the position of the max concurrent streams.

—— Cloudflare Max concurrent stream
—— CloudFront

120 —— MaxCDN
—— CDNSun

100

80

60

40

Bandwidth Amplification Ratio

20

50 100 150 200 250 300 350 400

Number of Concurrent Streams 1 7

Comparison with previous work

+ Our work achieved larger amplification factors than previous work.

Egla::fiiﬁn MaxCDN Fastly = CDNsun CloudFront KeyCDN Cloudflare
Our Attack . .
Amfrjgif)itm 94.7 97.9 118.7 116.9 105.5 166.1
TP Teanami Eljl":t‘t{iign HTTP/2 Proxies built with Nginx and Nghttp2
Attack
Am;lélaiizz;tion 799 04 4 140.6

18

HTTP/2 Connection Amplification Attack

< concurrent streams in one HTTP/2 connection — multiple HTTP/1.1 connections

Send/recv msg slowly Connection resources exhausted
- - :
& mmm @
r \ HTTP/2 _‘,_ N

Attacker HTTP/1.1 Origin

Max concurrent streams
per HTTP/2 connection

Connection

Amplification Yes Yes]]] Yes

19

Attack-3
Egress IP Blocking Attack

Origin Shield

Without Origin Shield

000 @\
000) l
000 /

—

1 https://docs.fastly.com/en/quides/shielding

With Origin Shield
- reduce origin workload
- speed up cache-miss responses

000 =

8w

backend connections
originated from less
egress 1Ps.

21

Threat Model

+ Global clients will be affected when an attacker just block one (or a

small set) egress IP(s)
access blocking é
% \ Attacker
\ i\
S W~
—
b o CDN (7] - }
» O Egress

;e Origin
Global Clients @gress /

Next we describe our measurement of CDN [P distribution, and evaluation experiments.
22

Characteristics of Egress IP distribution

+ Observation 1: Fewer egress IPs than ingress IPs

_ Ingress IPs Egress IPs Egress/Ingress

CloudFront 128,906 0.67%
Cloudflare 490,309 242 0.05%
Fastly 64,659 1,136 1.7%

MaxCDN 300 12 4%

+ Observation 2: Churning rate of egress IPs are low
>MaxCDN: 96.32% of the backend connections originated from the same egress IP.
> (ther CDNs churn egress IPs more fast, < 10% of the backend connections originated
form the same egress IP.

1 Results are consistent with [Unveil the hidden presence, ICNP °19]
23

Egress IP Blocking Evaluation

MaxCDN

» We block one single egress IP at our origin for 12 hours

> Access the website from global ingress IPs

-~ MaxCDN_Beijing
—4— MaxC Hi

MaxCDN_Singpore

No blocking.

100

Successful accessing ratio 1s 100%

Percentage
[=)] o
o o

=y
[

N
(=)

Block one egress IP.

' Successful accessing ratio drops below 10%.

12

24

Real-world Case Study

Censorship (e.g., Great Firewall of China) Collateral blocking

- locate between CDN and origin - Attacker sends requests to ingress IPs
- inspect censored bad words :> - Global end-users are collaterally blocked
- block the IP pair for 90s

- ———

block the IP pair for 90s -

2. GET /Banned Wor:dX. ' '

° 1 \ :
A?f. Collateral blocking‘ S :::::\ . 1 ,:
' > x:
Global ingress IPs 1 egress IP ! \\\\:s

~
AN

\ MaxCDN y, GFW Our origin

End-users

Mitigation

HTTP/2 support for back-end connection

HTTP/2 attack limit the back-end network traffic.

limit the number of CDN back-to-origin connections
Pre-POST attack _ .
enforce strict forwarding (store-then-forward).

Egress IP blocking apply unpredictable egress IP churning strategy.

26

Responsible Disclosure

Cloudflare: reproduced HTTP/2 amplification with 126x and rewarded us $200 bonus.
Fastly: confirmed our report and offered us T-shirts.

CloudFront: suggested HTTP/2 amplification 1s a feature of HTTP/2 standard, and
would like to use rate-based WAF rules to mitigate the attack.

MaxCDN: stated the egress IP blocking 1s out of scope as i1t involves with additional
GFW infrastructure.

CDNSun and KeyCDN: received our report but no further comments so far.

27

Summary

» A empirical security study on CDN back-end connections
+» HTTP/2 amplification attack

+» pre-POST slow HTTP attack
+ Egress IP blocking attack

+ Real-world evaluation on six CDN vendors

+» Received positive feedback from some CDNs

+» How to balance performance and security

28

Thank you!

