Abusing CDNs for Fun and Profit: Security Issues in CDNs’ Origin Validation

Run Guo*, Jianjun Chen*, Baojun Liu*, Jia Zhang* ©) Chao Zhang* (=9
Haixin Duan* || ® Tao Wan', Jian Jiang?, Shuang Hao® and Yaogi Jia¥
*Tsinghua University, THuawei Canada, iShape Security, §University of Texas, Dallas, 1IZilliqa Research
||Tsinghua University-360 Enterprise Security Group Joint Research Center

Abstract—Content Delivery Networks (CDNs) are critical In-
ternet infrastructure. Besides high availability and high per-
formance, CDNs also provide security services such as anti-
DoS and Web Application Firewalls to CDN-powered websites.
However, the massive resources of CDNs may also be leveraged
by attackers exploiting their architectural, implementation, or
operational weaknesses.

In this paper, we show that today’s CDN operation is overly
loose in customer-controlled forwarding policy and the lack of
origin validation leads to a wide range of abuse cases such as
DoS attack and stealthy port scan. We systematically study these
abuse cases and demonstrate their feasibility in popular CDNs.
Further, we evaluate the impact of these abuses by discovering
that there are millions of CDN edge servers, and a substantial
fraction of them can be abused. Lastly, we propose mitigation
solutions against such abuses and discuss their feasibility.

I. INTRODUCTION

A Content Delivery Network (CDN) usually deploys edge
servers or surrogates in different geographical locations that
are often across the global Internet backbone, working as a
distributed network service with a significant capacity of both
computational resources and network bandwidth. By caching
contents for its customers’ websites, a CDN redirects web
requests from end-users to geographically nearby surrogates,
providing websites with both high global availability and
improved network performance. Due to a wide range of
benefits offered by CDNs, numerous customers spanning from
small to large websites are now deployed behind CDNs. As
a result, CDNs have become a critical Internet infrastructure,
and brought billions of annual revenue to their providers [1].

In order to compete in this booming market, most CDNs
offer potential customers free or free-trial services, as well as
flexible configuration options, such as HTTP header manipula-
tion, to minimize deployment efforts and required changes in
customers’ websites. However, over-emphasis of convenience
also brings security flaws.

In this paper, we investigate the security of CDNs, and
point out CDNs could be abused in many ways. The root
cause is that, CDNs do not validate the customer-supplied
website origin option properly. The origin is a domain name
or an IP address that a CDN will forward requests to and
pull resources from, an ordinary CDN customer normally
configures the origin to point to the web server he owns.
However, as CDNs don’t validate the customer’s ownership of
the origin, a malicious CDN customer could drive CDN sur-
rogates launching TCP requests to an arbitrary domain name
or IP address. Accompanied by other flexible configurations
provided by CDN:gs, attackers could abuse CDNs to access third

party resources in unintended ways. For example, an abuser
can utilize surrogates as proxies to access resources restricted
per IP, to circumvent Internet censorship, to scan TCP ports
covertly and to launch DoS attack etc. The fact that CDNs
provide free or free-trial services further reduces the cost of
launching such abuses.

It is worth noting that, different CDNs provide varied con-
figuration options, and certain CDN’s have enforced restrictions
on customers’ configurations. For example, some CDNs have a
white-list of TCP ports that surrogates could connect to. These
restrictions could invalidate some abuses aforementioned, e.g.,
stealthy TCP port scan. However, we point out that surrogates
from different CDNs could be chained together to bypass such
restrictions. By systematically studying features provided by
eight different CDNs, we find out six possible abuse cases.

Furthermore, we have evaluated the impacts of such abuses.
We found out millions of globally distributed surrogates could
be abused. Attackers could simply register a CDN service, and
then build a controllable proxy pool using these surrogates.
Even worse, since CDNs have become an indispensable part
of the Internet and served most of the popular websites,
when third parties are under attack due to CDN abuses, it
is impossible to stop the attack by simply blocking CDNs’ IP
addresses without causing collateral damages.

In summary, we make the following contributions:

1) We point out the CDN Origin Abuse that a malicious
CDN customer can abuse CDNs as the proxy to ac-
cess any website or establish a TCP connection to any
TCP port, due to the fact that CDNs don’t validate the
customer-supplied origin. Accompanied with CDNs’ rich
configuration options, this Origin Abuse opens the door
for a wide range of abuses.

2) By studying features provided by 8 popular CDNs, we
specifically outline 3 categories of CDN abuses, which
rely on CDNs’ three features respectively, i.e., flexible
configurations, network proxy, and global Geo-IP distri-
bution. And we systematically design 6 abuse cases to
evaluate the applicability of such abuses on the Internet.

3) We evaluate the impact of these abuses by measuring the
volume of CDN surrogates. We propose methods to find
out surrogates’ distribution, and have measured the num-
bers of CDNs’ user-facing IPs and website-facing IPs. We
find millions of surrogates that are globally distributed.
The abundance and the global Geo-distribution of these
surrogates greatly amplify the severity of CDN abuses.

We agree that some attack techniques (e.g., bypassing IP
Geo-blocking) discussed in this paper aren’t new in them-

selves. But the central theme of this work is that these
attacks can be conducted by exploiting CDN vulnerabilities or
features. The contribution of this work is to show that CDN
as a critical Internet service, has enabled various abuses or
attacks, due to both of its lack of security consideration and
inherent difficulties as a large-scale proxy network with weak
authorization. Nevertheless, some of those CDN-based attacks
may not cause more severe damages than those not abusing
CDNs. However, some other attacks (e.g., millions of high
bandwidth CDN nodes can be abused in scanning and DoS.)
can do impose a serious threat.

We hope the discussions of a wide range of abuse cases help
serve the purpose of raising security awareness among CDN
providers and motivating them to fix the problems, resulting
in improved security of critical Internet infrastructure.

II. BACKGROUND

As a distributed Internet infrastructure, a CDN offloads
network traffic from a website origin by caching its resources,
and a CDN also speeds up end-users’ accessing delay by
deploy a large number of CDN surrogates with high bandwidth
around the world.

From an end user’s view, when he or she tries to access a
CDN-powered website, CDN’s request-routing mechanism [2]
will redirect HTTP request to a surrogate that could best serve
the request. For example, in “DNS rerouting” mechanism, the
website domain name is first resolved to a CDN assigned
subdomain. Then, the domain name system of a CDN network
is responsible for returning the surrogate IP that could best
serve the request based on metrics such as network proximity,
bandwidth availability. After this DNS resolving process,
requests are sent to the surrogate IP returned in DNS response.
The chosen surrogate primarily inspects the “Host” header and
URL within the incoming requests, and it decides whether to
serve the requests with locally cached contents or fetch the
requested contents from the website origin associated with that
“Host” header.

Although CDNs use the request-routing mechanism to
schedule surrogates, an end user can also bypass it by directly
sending HTTP requests to a surrogate’s IP address. In these
requests, the “Host” header is filled with the CDN-powered
website’s domain name, to notify the surrogate of the website

he or she wants to access [3], [4].
J]

origin.web.com

1. Register CDN service
for www.web.com

CDN

2. Configure origin.web.com
Provider

Owner of as the origin in the CDN

web.com GpN assigned sub-domain
www.web.com.cdn.com

cdn.com

3. Add a CNAME to chain to CDN assigned sub-domain
CNAME

% \ Host
‘ www.web.com

Fig. 1: Procedures to deploy a website behind a CDN
From a website owner’s view, in order to deploy a website
behind a CDN and make “DNS rerouting” work, the owner
can follow procedures as simply illustrated in Fig 1. Firstly,

DNS Server
web.com

www.web.com.cdn.com

the website owner has to register a CDN’s service to become
a customer. Secondly, the website owner should configure
options in the CDN’s customer interface, such as caching and
forwarding policies. Among these options, the website origin
is a required field, it directs the CDN from where to fetch
the requested resources back. Thirdly, the website owner use
CNAME to chain to the CDN-assigned subdomain. Thus, the
domain name system of a CDN network is empowered to
resolve the DNS query and return the surrogate IP.

As we can see, the website origin is a critical option, and
it’s directly configured by the CDN customer. However, for 8
CDNs we examined, we find such customer-configured option
lacks proper validation. In the next section, we’ll analyze this
origin validation problem in detail and present various abuses
built on it.

III. CATEGORIES OF CDN ABUSE
A. The Root Cause Analysis

As illustrated in Section II, CDNs will forward cache-
missed requests to the website origin. To specify where the
website origin is located, CDNs all provide an origin option
in their customer interface. As a CDN customer, the website
owner can configure the origin address either in an IP address
or domain name format, as shown in Table I.

However, our experiments show that most CDNs do not
validate such customer-supplied critical information properly
(see Table I). For example, among the 8 leading CDNs, 3
of them validate neither the IP nor domain name configured
in the origin option, 3 of them validate origin IPs by filtering
out private IPs. Cloudflare filters already-registered customers’
domains, selected well-known domains (e.g., Facebook and
Twitter), and some public domains that provide sub-domain
service (e.g., GitHub). None of these CDNs validate whether
their customers own the configured IPs or domain names.

CDN Origin Abuse: Due to the lack of proper origin
validation, an abuser can register to be a CDN customer and
configure the origin to be the nearly arbitrary domain or IP
not owned by the abuser. Then, the CDN will forward any
subsequent cache-missed requests to this configured origin.
Besides, empowered with request-routing bypassing mecha-
nism, an abuser can choose which surrogates to be abused to
forward requests. Therefore, a malicious CDN customer can
abuse a CDN as a proxy pool to forward requests back to
nearly arbitrary origin, and the abuser can directly schedule
which and how many proxies to be abused. We name such
abuse as the CDN Origin Abuse, and it builds the foundation
for a wide range of abuses.

Knowing that origin can be configured arbitrarily by a
CDN customer, we systematically evaluate how CDNs can be
abused in each of those CDN distinct features. We outline 6
abuse cases (see Table II) and classify them into 3 categories
namely CDN Option Abuse, CDN Proxy Abuse, and CDN
Geo-IP Abuse. We acknowledge that our abuse cases are
likely incomplete and other cases may exist. Nevertheless, they
serve the purpose of demonstrating that CDNs are subject to
extensive abuses and require significant security enhancement.

TABLE I. CDNs’ Origin Option and Validation Behavior

| | Configure IP [IP Verification Behavior | Configure Domain Name | Domain Verification Behavior |

Akamai v No Verification v No Verification
Amazon N/A N/A v No Verification
Azure v No Verification v No Verification
Baidu v Private IP Blacklist v No Verification
Cloudflare v Private IP Blacklist v Domain Blacklist
Fastly v No Verification v No Verification

Incapsula v Private TP Blacklist N/A (Free-Trial) N/A
MaxCDN N/A N/A v No Verification

TABLE II: The categories of CDN Abuse

Abuse Category | Abuse Cases

Experiments

CDN Option Abuse HTTP Header Manipulation

Exp.IV-A: Chain CDNs together with “Host” header modification
Exp.IV-B: Reset HTTP headers to avoid IP-based user tracking

Origin Port Abuse

Exp.IV-C: CDN-proxied TCP port scanning
Exp.IV-D: TCP concurrent connection exhaustion attack

CDN Proxy Abuse Forwarding Abuse

Exp.IV-E: Point the origin to censored websites to circumvent censorship

Segmented TCP Abuse

Exp.IV-F: CDN-based DoS attack against any websites

IP Abundance Abuse

Exp.IV-G: Internet survey fraud through CDNs

CDN Geo-IP Abuse | IP Geo-distribution Abuse

Exp.IV-H: Bypass web service’s IP Geo-blocking

B. CDN Option Abuse

In order to minimize customers’ deployment efforts, CDNs
provide their customers with rich configuration options to
control caching and forwarding behaviors. However, insuffi-
cient validation of these options can also allow a malicious
CDN customer to abuse CDNs. Two cases of abusing CDN
configuration options are discussed below.

1) HTTP Header Manipulation: CDNs commonly allow
customers to configure how HTTP headers in requests should
be modified when being forwarded by CDNs. For example,
CDNs allow the change of “Host” header, a critical field in
determining how a request is routed, e.g., to which domain on
a shared web server. Other HTTP headers can also be modified
too, such as “X-Forwarded-For”, we list these modifiable
headers in Table IV of Section IV-B.

Two abuse cases are designed to demonstrate the HTTP
header manipulation, including Exp.IV-A that modifies “Host”
header to chain CDNs together to enlarge the attack surface
of after-mentioned abuses, and Exp.IV-B that resets HTTP
headers to avoid user tracking.

2) Origin Port Abuse: Besides IP and domain name, some
CDNs also allow their customers to configure the port number
of the website origin. An attacker can abuse this option to
forward HTTP requests to arbitrary TCP port, regardless of
the state of this port or what services are running on it.

We find that, when encountering errors, CDNs’ error re-
sponses could expose the port status of the website origin.
With such unintended information disclosure, CDNs can be
abused for a stealthy port scan, since it is the CDN’s IP, not
abuser’s own IP, that is logged by the target. In Exp.IV-C, we
validate the possibility of a CDN-proxied scan by examining
different CDNs’ error messages.

Even when a non-HTTP TCP service is running on the port
of website origin, surrogates can still complete TCP’s 3-way
handshakes and establish a connection with the website origin,

bypassing the SYN cookies [5] defense. In Exp.IV-D, we abuse
a CDN to establish TCP connections with our testing DNS
server’s TCP port 53, resulting in DoS effect by exceeding
the server’s TCP concurrent connection limit.

C. CDN Proxy Abuse

A CDN works as the traffic proxy between end users and the
website origin, it divides an end-to-end TCP connection into
two segments (or more when multiple CDN-internal nodes are
involved). We consider 2 abuse ways here.

1) Forwarding Abuse: With the origin abuse, a CDN cus-
tomer is able to configure the origin server to be a sensitive
website which might be inaccessible for local network envi-
ronment. In Exp.IV-E, we show that an abuser can circumvent
Internet censorship by configuring a censored website as the
origin, and get restricted contents via a CDN network.

2) Segmented TCP Abuse: The two TCP segments (namely
front-end and back-end respectively) created by the CDN
can have inconsistent TCP states. For example, a back-end
segment may still be in transmission while the associated
front-end segment has closed connection. As noted in [3],
these inconsistent TCP states can be abused, e.g., to launch a
DoS attack against a CDN-powered website. We re-evaluated
this abuse case (cf IV-F) and discovered that certain mecha-
nisms (e.g., abort the back-end connection when the front-end
connection closes) have been deployed by CDNs to mitigate
this type of abuse. However, we also found that this mitigation
can be defeated with the Sockstress [6] trick of using small
TCP window to read slowly in the front-end connection.
Further, with the origin abuse, the severity of this CDN-based
DoS attack is amplified by pointing the origin to any websites.

D. Geo-IP Abuse

The characteristic of widely Geo-distribution of CDN server
could empower an abuser to forward requests to a website

TABLE III: CDNs’ Host Modification Behavior

| | Request Domain | Origin Domain | Any Domain |

Attacker

DNS Server for %

attack.com

. www.attack.com

HTTP Get/Post

Host

CNAME

CDN

CDN B

CDN A Forwarding Configuration

(Request

Forwarding Originw

waw.attack.com

b.attack.com

CDN B Forwarding Configuration

[Request

Forwarding Origin |

b.attack.com

a

www.attack.com

www.attack.com.cdna.com

victim.attack.com
or
www.victim.com

b.attack.com

b.attack.com.cdnb.com

HTTP Get/Post

www.victim.com

Akamai v v
Amazon v
Azure v v v
Baidu v
Cloudflare v N/A(Free Plan) | N/A(Free Plan)
Fastly v v v
Incapsula 4
MaxCDN v v v

from different origin points. And the massive CDN surrogates
allows following two kinds of abuse.

1) IP Abundance Abuse: As CDNs have deployed a large
number of surrogates, the IP abundance of these surrogates can
be abused to bypass restriction per IP address. For example,
Internet survey website “polldaddy.com” records voter’s IP
to enforce the restriction of one vote per IP, as shown in
Exp.IV-G. However, we successfully voted hundreds of times
through different CDN surrogates.

The IP abundance can also amplify the severity of other
CDN abuses as well, e.g., leveraging different IPs, a CDN-
proxied scan can be speed-ed up, or a CDN-based DoS attack
can be launched in parallel.

2) IP Geo-Distribution Abuse: As CDNs endeavor to de-
ploy surrogates globally, such massive Geo-distribution can
be used to bypass the restriction on IP’s Geo-location. In
Exp.IV-H, we demonstrate that the Geo-blocking enforced
by the music website “www.pandora.com” can be easily
bypassed.

IV. PRACTICAL EXPERIMENTS OF CDN ABUSE

We performed extensive experiments to validate the abuse
cases outlined in Section III, and we report our technical detail
here.

A. Chain CDNs together with “Host” header modification

When a CDN surrogate forwards requests, the surrogate can
either keep the “Host” header unchanged, or modify it to the
configured origin’s domain name.

As in Table III, 5 out of 8 CDNs support modifying the
“Host” header to the origin domain. And Azure, Fastly and
MaxCDN even support modifying the “Host” header to any
domain. Thus, with CDNs’ no origin validation behavior, an
abuser can configure CDNs to forward HTTP requests to any
target website’s domain name or IP, and these requests will be
processed normally as the modified “Host” header correctly
matches to the target website’s domain name.

Besides, with “Host” header modification ability, an attacker
can add CNAME records as in Figure 2, to chain two CDNs
together. It is also possible to chain more CDNs to create a
request-forwarding line, requests sent from the attacker can
sequentially be forwarded back to the final origin.

We succeeded in accessing our website by sequentially
chaining Microsoft Azure and Amazon CloudFront, as shown
in the “Via” and “X-Forwarded-For” headers of HTTP requests
forwarded to the website. We can see that, firstly Azure adds
its distinctive header value “HTTP/1.1 ECCAcc (hhp/9AB2)”

victim.attack.com———> @

I P 1.1.1.1
AN

Fig. 2: Chain CDNs together to create a request-forwarding line

victim.attack.com | www.victim.com/1.1.1.1

in “via” header, together with an Azure IP in “X-Forwarded-
For” header, then CloudFront appends “*.cloudfront.net” and
a CloudFront IP.

HTTP/1.1 ECCAcc (hhp/9AB2),
3f218bd55e2fcd2fab19328e£2d398bc.cloudfront.net
X-Forwarded-For: azure.ip, cloudfront.ip

via:

This chaining is particularly useful in enlarging the attack
surface of aforementioned CDN abuses, e.g., to make CDN
abuses to be more difficult to trace back when different
CDNs’ surrogates are abused as the proxy chain, or to bypass
port limitation (See Exp. IV-C) or forwarding restriction (See
Exp. IV-F) enforced by some CDNs.

B. Reset HTTP headers to avoid IP-based user tracking

Although browser’s “incognito mode” keeps the end-user’s
privacy by not exposing any sensitive information, “incog-
nito mode” can’t hide the end-user’s IP from user-tracking
websites. Thus, in order to avoid being tracked by websites,
besides browser’s “incognito mode”, the end-user may addi-
tionally use a public proxy to hide the IP address. However, the
public proxy could automatically add HTTP headers such as
‘x-forwarded-for’, ‘HTTP_X_FORWARDED_FOR’ or ‘Via’
when forwarding requests [7], which still expose the end-user’s
real IP to websites.

Different from the public proxy, CDNs support filtering
HTTP headers when forwarding requests, and a CDN customer
can directly control this filtering behavior. Thus, when an
abuser configures the target website as the origin, CDNs can
both filter HTTP headers and hide the end-user’s IP address.
When browsing the website through CDNs, CDNs work as
the ‘“anonymization proxy” to not expose any user-related
information to the website.

In experiments, we examine whether CDNs will pass any
user-related information back to the origin, and whether the
information can be reset or filtered. The results are shown
in Table IV, e.g., CloudFront by default pass four user-
related headers back to the origin, but CloudFront also support
filtering these headers.

Although 5 out of 8 tested CDNs don’t support filtering
any headers, with the CDN-chaining trick to chain more than
two CDNs together, this abuse is still applicable when one of
CDNs supports header manipulation,

TABLE 1V: HTTP Header Modification Behavior

Headers that can expose end-user identity Reset/Filter
Akamai HTTP_X_FORWARDED_FOR, X-Forwarded-For, User-Agent, Cookie N/A
Amazon CloudFront HTTP_X_FORWARDED_FOR, X-Forwarded-For, User-Agent, Cookie Vv
Azure HTTP_X_FORWARDED_FOR, X-Forwarded-For, User-Agent, Cookie N/A
Baidu HTTP_X_FORWARDED_FOR, Cf-Connecting-Ip, X-Forwarded-For, User-Agent, Cookie N/A
Cloudflare HTTP_X_FORWARDED_FOR, Cf-Connecting-Ip, X-Forwarded-For, User-Agent, Cookie N/A
Fastly Fastly-Client-1P, Fastly-Temp-XFF, X-Forwarded-For, User-Agent, Cookie v/ (Any Header)
Incapsula HTTP_X_FORWARDED_FOR, X-Forwarded-For, Incap-Client-Ip, User-Agent, Cookie | N/A in Free Version
MaxCDN X-Forwarded-For, User-Agent, Cookie v/ (Any Header)

C. CDN-proxied TCP port scanning

We examined CDNs’ origin port configuration as shown in
Table V !. We can see that some CDNs support configuring the
port in a wide port range. Although some CDNs only support
port 80 and 443, this port restriction can also be bypassed with
the CDN-chaining trick.

TABLE V: Origin’s TCP Port Configuration

’ \ Port Configurable? \ Port Range ‘
Akamai v Unspecified
Amazon v 1024-65535

Azure v 72,80-89,443-444...

Baidu X 80,443
Cloudflare X 80,443

Fastly v Unspecified
Incapsula X 80,443
MaxCDN v Unspecified

Therefore, an abuser can use CDNs to forward HTTP
requests to any TCP port. What’s more, we find that CDNs
reply back different HTTP responses according to the origin
port’s status (filtered, closed or Open). As shown in Table VI,
Fastly and Incapsula return different response according to
the origin port’s statuses. Though not all CDNs’ responses
are distinctive to differentiate the port’s statuses, e.g., we can
only differentiate “Open” from “Closed/Filtered” in Amazon
CloudFront’s responses, but by chaining CloudFront with
Fastly, it is still applicable to differentiate these port statuses.

With such information disclosure, an abuser can employ the
CDN as a TCP port scanning proxy. Further, the scan can be
classified into two types:

o Host scanning: In the CDN’s configuration, the abuser
configures the target’s IP or domain as the origin, and
changes TCP port sequentially, to scan the target’s different
ports. However, this host scanning seems inapplicable, as the
CDN’s configuration change requires hours or even days to
populate globally.

o Network Scanning: The abuser configures the origin to be
a domain name under control and keeps the origin port
unchanged. Then, the abuser can sequentially scan target
IPs by resolving each DNS query to a different IP with a
zero TTL in the DNS response.

Obviously, successful network scanning requires CDNs to
respect the DNS TTL value, thus we measure these CDNs’
DNS resolution behaviors. As shown in Table VII, in order

1“Unspecified” means that we haven’t found official document that il-
lustrated the port range, however we have tested some ports to verify its
configuration.

to correctly associate each HTTP response with the IP we
resolved in each DNS query, we could generally delay each
scanning request over 60 seconds to wait stale DNS records
invalidated.

This CDN-based scan seems not different from normal
proxy-based scan, but we think CDN IPs are less likely being
blocked due to their high IP-reputation, and it is especially
useful to scan a CDN-powered website which has a white-
listed firewall to only allow the CDN’s access. And it can be
abused massively to speed up scanning process considering
CDNs’ global distribution and large quantity (See V).

D. TCP concurrent connection exhaustion attack

When a non-HTTP service is running on the port of website
origin, such as TCP-based DNS, though the service can’t parse
HTTP protocol, abundant surrogates can still be abused to
establish TCP connections with the service. These connections
can surpass the service’s TCP concurrent connection limit,
and starve other real user’s connection requests, resulting in a
distributed connection exhaustion attack.

We test this attack against the DNS BIND server, as the
BIND has a concurrent TCP connection limit which defaults
to 100, and this limit is commonly shared between TCP-
based DNS query and zone transfer [8]. Thus, surrogates can
be abused to establish 100 concurrent TCP connections on
port 53 of BIND server (issuing HTTP commands, not DNS
commands), reaching the limit and preventing any new TCP
connection to port 53 including DNS query and zone transfer.

We set up a DNS master server of BIND 9.8.2 and a
DNS slave server of BIND 9.10.3, the slave server is set to
synchronize periodically with the master server for DNS zone
transfer. Both servers are firewall-protected by a strict TCP
concurrent connection limit of 1 connection per IP only. When
the master server is under attack, its “tcp-clients” limit of 100
is quickly overflowed, and errors are logged with the CDN’s
IP:

client x.x.x.x#30822:
reached

no more TCP clients: quota

When a normal client tries to query the DNS server with
TCP at the same time, the connection can’t be established.
Meanwhile, zone transfer launched from the slave server fails
too, logged as:

named[8334]: zone xxx.org/IN: Transfer started.
named[8334]: transfer of ’xxx.org/IN’ from x.x.x.x
#53: failed to connect: timed out

named[8334]: transfer of ’xxx.org/IN’ from X.x.x.X

#53: Transfer status: timed out

TABLE VI: CDNs’ HTTP Responses According To The Origin’s TCP Port Status

Filtered (Null Response)
H: HTTP header, B: HTTP Body

Closed (Rst Response)
H: HTTP header, B: HTTP Body

Open (Complete 3-way handshakes)
H: HTTP header, B: HTTP Body

Akamai H: HTTP/1.1 504 Gateway Time-out H: HTTP/1.1 503 Service Unavailable H: HTTP/1.1 503 Service Unavailable
aMaL | B An error occurred while processing your request. | B: Service Unavailable - Fail to connect B: An error occurred while processing your request.
H: HTTP/1.1 502 Bad Gateway)) H: HTTP/1.1 502 Bad Gateway)) H: HTTP/1.1 502 Bad Gateway
B: CloudFront attempted to establish a connection | B: CloudFront attempted to establish a connection s ..
Amazon R R B: CloudFront couldn’t connect to the origin
with the origin, but either the attempt failed with the origin, but either the attempt failed .. .
o . . . or the origin returned an incorrect response
or the origin closed the connection or the origin closed the connection
Azure H: HTTP/1.1 504 Gateway Timeout H: HTTP/1.1 504 Gateway Timeout H: HTTP/1.1 502 Bad Gateway
B: 504 - Gateway Timeout B: 504 - Gateway Timeout B: 502 Bad Gateway
Baidu H: HTTP/1.1 522 Origin Connection Time-out H: HTTP/1.1 521 Origin Down H: HTTP/1.1 520 Origin Error
B: 522: Connection timed out B: 521 - Origin Down B: Web server is returning an unknown error
Cloudflare H: HTTP/1.1 522 Origin Connection Time-out H: HTTP/1.1 521 Origin Down H: HTTP/1.1 520 Origin Error
B: 522: Connection timed out B: 521: Web server is down B: 520: Web server is returning an unknown error
Fastl H: HTTP/1.1 503 Connection timed out H: HTTP/1.1 503 Connection refused H: HTTP/1.1 503 backend read error
&% 1 B: Brror 503 Connection timed out B: Error 503 Connection refused B: Error 503 backend read error
Incapsula H: HTTP/1.1 503 Service Unavailable H: HTTP/1.1 503 Service Unavailable H: HTTP/1.1 503 Service Unavailable
P B: Error code 20 TCP connection timeout B: Error code 8 TCP connection rejection (TCP Reset) | B: Error code 5 error in processing the server response
MaxCDN H: HTTP/1.1 504 Gateway Time-out H: HTTP/1.1 502 Bad Gateway H: HTTP/1.1 504 Gateway Time-out
B: 504 Gateway Time-out B: 502 Bad Gateway B: 504 Gateway Time-out
TABLE VII: CDNs’ DNS Resolution Behaviors . . .)
there is still 25.75% of the Alexa Top 1000 websites haven’t
DNS Cache (Resolver) l Minimum TTL (second) ‘ been hosted on CDN yet as shown in Section V Figure 4.
Akamai | per CDN node ~60 As not all the censored websites have been hosted on CDNs
Amazon | per data center ~0 already, we believe this paper’s trick is more flexible for end
AZ_ure per CDN node ~0 users. An end user can register a CDN service to circumvent
C]Ba(lic;u per SDN node ““6(;) different censorship systems accordingly, and choose other
oudrnare er data center ~ .
P CDNs when one CDN is blocked [13].
Fastly | per CDN node ~0
Incapsula | N/A N/A F. CDN-based DoS attack against any website
MaxCDN | per CDN node ~0 On the fact that the CDN’s user-facing connection and

E. Circumvent Internet censorship

As CDNs have become an indispensable part of the Internet
and served most of the popular websites (see Figure 4), it’s
impossible for Internet censorship systems to block CDNs
without causing collateral damage [9], [10].

Therefore, on the fact that surrogates are not blocked and
located outside the censorship system, CDNs can be used
to access the censored websites. Such circumvention can be
conducted in just 3 steps:

1) Register a new domain name (e.g., “.tk” and “.ml”), to
ensure this domain name can escape DNS spoofing [11].

2) Apply for CDN service with the registered domain name,
and configure the censored website as the origin.

3) Access the registered domain with HTTPs2, this adds
another layer of security and helps to bypass on-path DPI
(Deep Packet Inspection) [12] between users and the CDN.

However, in the CDN-retrieved web pages, there may exist
absolute URLs containing the censored domain names. But
this problem can be solved with a pre-installed browser
extension to substitute the absolute URLs with the newly
registered domain name, then following clicks on these URLs
can hit the CDN service again.

Holowczak et al. [4] discussed CDN-based circumvention
too, but it needs a side channel server to bypass DNS spoofing,
which could be a single point of failure once being blocked.
And [4] can only access websites hosted on CDNs already,

2CDNss offer user-facing HTTPs connections even if back-end websites only
support clear-text HTTP.

website-facing connection can have inconsistent TCP status
and asymmetric bandwidth, Triukose er al. [3] presents a
bandwidth DoS attack against CDN-powered website servers.
In the attack, an attacker sends a large number of requests
to different surrogates directly, requesting for the same large
file on the website. The URL of these requests is appended
with a random query string to bypass the CDN cache. Then,
the attacker cuts off all front-end connections, while the CDN
still sustains all back-end connections that transfer in a higher
bandwidth. This results in a bandwidth exhaustion DoS attack
against the website.

TABLE VIII: Whether CDNs Keep Back-end Connection While A
Attacker Manipulates Front-end Connection

[[Front-end Connection Close [Front-end Connection Slow Read]

Akamai Keep
Amazon Close Keep
Azure Close Keep
Baidu Close Keep
Cloudflare Close Keep
Fastly Keep
Incapsula Close Keep
MaxCDN Close Keep

However, in experiments we find that some CDNs have
ignored the query string in the URL of requests by default, thus
requests of the same file with random query string URLs won’t
be forwarded back to the website server again. And some
CDNs will close back-end connections accordingly once front-
end connections are cut off, as shown in Table VIII. These
mitigations can all invalidate the attack in [3], besides, this
attack is only applicable to websites deployed behind CDNs
already.

Differently, with the CDN origin abuse, an attacker can
point the origin to any websites, and customize CDNs’ cache
policy directly, e.g., whether to forward requests based on
the URL’s path, whether to filter the URL’s query string.
Further, with Sockstress [6] trick to slowly read responses
from surrogates3, this can still result in a back-end bandwidth
exhaustion attack, while the attacker’s front-end bandwidth
consumption is kept at the minimum.

In order to evaluate the attack, we deploy a virtual web
server in our lab with 100 Mbps bandwidth. The website is
setup with Nginx 1.10.0’s default configuration, and protected
with IPtable by limiting the incoming TCP connections per IP
to be 30.

Then we register CloudFront’s service by configuring our
website as the origin. In order to minimize any potential
damage to the CDN, we only use 50 surrogates. From a PC
as the attacker, we directly send 30 requests to each chosen
surrogate, all requesting for a 10MB file in our website, with
random query string URL to bypass the CDN cache.

Fig 3(a) and Fig 3(b) compare the bandwidth consumption.
After connecting the surrogates, attacker’s front-end band-
width is manipulated within 100 Kbps with Sockstress trick,
while website’s bandwidth achieves 60 Mbps at maximum.

Fig. 3: DoS Attack of Asymmetric Bandwidth Exhaustion
(a) Attacker Bandwidth
® Read

Total Ethernet Read and Write m Write

2400
1800

1200

KB/s
D
o
o

00:35:30 00:36:30

(b) Website Bandwidth

Total Ethernet Read and Write m Read m Write

0

©00:35:30

00:34:30

We can see that the more surrogates are abused, this attack
can lead to a more severe bandwidth exhaustion. Considering
CDN’s large computational resources and high bandwidth, we
believe this bandwidth exhaustion attack could be a disaster for
websites, especially for small websites most of which haven’t
been hosted on CDN yet.

00:36:30

G. Internet survey fraud through CDNs

We create an Internet survey demo at “polldaddy.com”, and
allow vote from one IP only once. We managed to bypass this
one-vote-per-IP limit by voting through different surrogates,
and we succeeded in voting hundreds of times.

3The attacker can set the front-end connection’s TCP window size to be
zero or a small value.

Note that the CDN'’s user-facing IP (inbound IP) is different
from the website-facing IP (outbound IP). With experiments in
Section V, we found that CDNs will group received requests
from different inbound IPs, and use fewer outbound IPs to pull
the requested resources back. Thus, in order to bypass such
outbound IP related restriction, an abuser can just randomly
schedule as many inbound IPs as possible for simplicity, or
record the mapping between inbound IPs and outbound IPs
with long-term measurement.

We agree that survey systems can use authentication to solve
this IP-based survey fraud easily, but it’s still useful in cases
when massive IPs are needed first.

H. Bypass web service’s IP Geo-blocking

Due to the copyright, we