
Faster and Better: Detecting Vulnerabilities in
Linux-based IoT Firmware with Optimized Reaching

Definition Analysis

Zicong Gao1,2, Chao Zhang3,4∗, Hangtian Liu1,2, Wenhou Sun3, Zhizhuo Tang1,2,
Liehui Jiang1,2, Jianjun Chen3, Yong Xie5

1School of Cyber Science and Engineering, Information Engineering University,
2State Key Laboratory of Mathematical Engineering and Advanced Computing,

3Tsinghua University, 4Zhongguancun Laboratory, 5Qinghai University

Abstract—IoT devices are often found vulnerable, i.e., un-
trusted inputs may trigger potential vulnerabilities and flow to
sensitive operations in the firmware, which could cause severe
damage. As such vulnerabilities are in general taint-style, a
promising solution to find them is static taint analysis. However,
existing solutions have limited efficiency and effectiveness. In this
paper, we propose a new efficient and effective taint analysis
solution, namely HermeScan, to discover such vulnerabilities,
which utilizes reaching definition analysis (RDA) to conduct taint
analysis and gets much fewer false negatives, false positives, and
time costs. We have implemented a prototype of HermeScan
and conducted a thorough evaluation on two datasets, i.e., one
0-day dataset with 30 latest firmware and one N-day dataset
with 98 older firmware, and compared with two state-of-the-
art (SOTA) solutions, i.e., KARONTE and SaTC. In terms of
effectiveness, HermeScan, SaTC, and KARONTE find 163, 32,
and 0 vulnerabilities in the 0-day dataset respectively. In terms
of accuracy, the true positive rates of HermeScan, SaTC, and
KARONTE are 81%, 42%, and 0% in the 0-day dataset. In terms
of efficiency, HermeScan is 7.5X and 3.8X faster than SaTC and
KARONTE on average in finding 0-day vulnerabilities.

I. Introduction

The number of Internet of Things (IoT) devices has grown
exponentially over the past decade and has reached 14.4 billion
by the end of 2022 globally [13]. Meanwhile, a huge amount
of IoT devices exposed in the network with weaknesses in
their firmware are susceptible to further attacks. According to
a report [20], up to one billion IoT devices have been attacked
in 2021. Note that firmware is the most critical component of
the device, responsible for running the customized programs
of the vendor on the device. Due to the closed-source and
hard-to-upgrade nature of device firmware [38], [32], they are
often vulnerable, and particularly easily affected by taint-style
vulnerabilities [7], resulting in serious security issues.

Among IoT devices, Linux-based devices are prevalent
and widely used in routers. Thus, detecting vulnerabilities in

*Corresponding author: chaoz@tsinghua.edu.cn

their firmware is crucial for protecting the security of Linux-
based IoT devices. As fuzzing is now the dominant solution
to finding software vulnerabilities, many fuzzing solutions are
proposed for IoT firmware. These solutions (e.g., [42], [10],
[40], [39]) generally have very high true positive rates but have
troubles with the testing environment because the firmware
is hardware-dependent. Some solutions try to rehost firmware
with emulators to enable fuzzing but have limited success rates.
For example, the SOTA rehosting-based firmware fuzzing
solution FirmAE [14] can only successfully emulate 79%
of the network services of the Linux-based firmware on its
dataset. Yet, there is no dynamic solution feasible for testing
all firmware.

On the other hand, static analysis solutions do not re-
quire hardware support and could be applied to large-scale
IoT firmware security analysis. Note that most IoT firmware
vulnerabilities are taint-style, i.e., they are caused by inse-
cure data flow from untrusted inputs to sensitive sinks in
firmware. Thus, several static taint analysis solutions, e.g.,
DTaint [5], KARONTE [26], SaTC [3], and Emtaint [6] have
been proposed to detect firmware vulnerabilities. Compared
to dynamic solutions, they are more practical to be applied
to IoT devices. However, they could be further improved to
reduce false negatives, false positives, and time costs.

In this paper, we propose a new taint analysis solution Her-
meScan, which directly applies traditional reaching definition
analysis (RDA) to the VEX intermediate representation (IR)
of binaries, to detect taint-style vulnerabilities in Linux-based
IoT firmware. The customized RDA generates a data depen-
dency graph that describes the def-use and use-def data flow
relationship of variables. By looking up the graph reversely,
HermeScan could check whether untrusted data at the source
points could reach operands of the sensitive sink operations.
An alert is raised if so. Specifically, it addresses the following
3 challenges and greatly promotes the effectiveness, accuracy,
and efficiency compared to existing solutions, making the
solution practical.

First, existing static taint analysis solutions often suffer
from high false negatives due to incomplete control flow
graphs (CFG) and loss of source points. In particular, the
CFGs of these solutions may be incomplete, especially when
calling library functions from binaries. Additionally, they miss
many taint/input sources. For instance, SaTC relies on precise
keyword matching to determine input sources between the

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24346
www.ndss-symposium.org

front-end (e.g., web pages) and back-end files (e.g., binaries) or
the IPC communication. HermeScan addresses these issues by
using two complementary schemes. One scheme is analysing
the library dependency of each firmware module and links
functions in different modules together to perform RDA, which
can uncover source points and sink points missed by other
solutions. Another scheme is a fuzzy matching strategy to
find more strings shared with front-end programs, enabling the
identification of back-end functions that reference these strings
as candidate source functions.

Second, existing static taint analysis solutions often have
high false positives, especially when the program path to
analyze gets longer. Therefore, some solutions [3] propose
to shorten the path to analyze, e.g., by setting the source
functions in the back-end that accesses the shared strings as
starting points of taint analysis. However, analysis starting
from these points without considering data flow context (e.g.,
input sanitization) would cause over-tainting to the source
functions’ parameters and return value, leading to inaccurate
analysis. HermeScan examines the usage of the parameters and
return values of candidate source functions to determine which
variables should be marked as tainted and applies data-flow
constraints on tainted variables to reduce the false positive.

Lastly, existing static taint analyses have high time over-
heads due to the large number of program paths to analyze
or the time cost of slow symbolic execution. Instead, Her-
meScan utilizes RDA to perform taint analysis, which is more
lightweight. However, when applying RDA to interprocedural
analysis scenarios, it still faces a performance issue due to
the large number of program paths to analyze. This path
explosion issue gets aggravated as the number of the paths
between taint source and sink points increases. To address
this problem, HermeScan applies a lightweight, on-demand,
context-sensitive RDA to achieve efficient inter-procedural taint
tracking. Furthermore, a path-merging strategy is designed to
reduce the number of repetitive analyses, to mitigate the path
explosion issue.

We have implemented a prototype of HermeScan based
on angr [30] and IDA Pro [9] with 4K lines of Python code.
We have conducted a thorough evaluation of HermeScan on
two datasets, i.e., one 0-day dataset with 30 latest firmware
and one N-day dataset with 98 older firmware with over
400 known vulnerabilities, and compared its performance with
that of two state-of-the-art (SOTA) solutions KARONTE and
SaTC. The results showed that HermeScan could find more
vulnerabilities with lower false positives/negatives and less
time than baselines, showing the solution is practical.

For the 0-day dataset, in terms of effectiveness, HermeScan,
SaTC, and KARONTE find 163, 32, and 0 vulnerabilities
respectively. We have reported these vulnerabilities to vendors
following the responsible disclosure procedure. Among these
163 vulnerabilities found by HermeScan, 76 are known to
the vendors (but not fixed in the latest firmware), and 87
are unknown to them (69 are assigned with CVE numbers).
In terms of accuracy, the true positive rates of HermeScan,
SaTC, and KARONTE are 81%, 42%, and 0%. In terms of
efficiency, HermeScan is 7.5X and 3.8X faster than SaTC and
KARONTE on average in finding 0-day vulnerabilities. For
the N-day dataset, the evaluation results are similar.

Request

Response

Front-End Back-End

Web
Server

Handler
program

Lib

Taint-Style
Vulnerability

IoT Device

Fig. 1: The simplified threat model of taint-style vulnerabilities
in IoT devices, which often come with a proxy-like web server
to process user inputs (e.g., for management).

In summary, we make the following contributions:

• We present a lightweight, on-demand, context-sensitive
RDA solution to detect taint-style vulnerabilities in IoT
firmware, which is more effective, accurate, and efficient.

• We have implemented a prototype of HermeScan and
discovered 87 0-day vulnerabilities in real-world devices.

• We build two sets of firmware samples and comprehen-
sively evaluate the performance of existing tools.

To foster future research, we will release the source code
of HermeScan.*

II. Background

A. Threat Model

In this paper, we focus on taint-style vulnerabilities [5],
[11], [4], [3] in Linux-based IoT devices. Figure 1 depicts
the scene of taint-style vulnerability: An attacker can access
the target device over a local or wide area network and send
arbitrary data to the device with no restriction. The data is first
parsed in the front-end files (such as JavaScript and HTML
files) provided by the firmware. Then on the device side, the
data is propagated to the Web service program in the back-
end. The Web service program further transmits the data to the
handler program that operates the device. During this process,
some library files are loaded to provide the necessary support.
The binary programs that provide Web service in the back-end
are often called border binaries, which usually include Web
server and handler programs. The Web server and the handler
program can also be integrated into a single binary, such as
httpd, which router vendors frequently customize.

In this case, without considering the hardware and software
protection of IoT devices, untrusted data can flow into unsafe
functions in the binary, causing security issues. Table II lists
the common taint-style vulnerabilities in our threat model,
which are also the targets our work supports.

B. Taint analysis

Taint analysis is a widely used technique for soft-
ware analysis, which abstracts the program as a 3-tuple
⟨sources, sinks, sanitizers⟩ [35], [22]. Sources are where the
program introduces dangerous or uncontrolled data from the
outside world. Identification of taint sources is determined
manually or automatically based on the characteristics of the
target. Sinks refer to specific points in an application’s code

*https://github.com/f01lprophet/HermeScan

2

where tainted data is utilized in a potentially unsafe or insecure
manner. Sink identification often relies on sensitive functions.
Taint propagation starts by labeling the input data as tainted
(taint tag management) at the source point and tracks how
the tainted data flows through the program, using either static
or dynamic methods. During taint propagation, sanitizers filter
out dangerous data or transform data into secure data. The
ultimate goal of taint analysis is to find a specific path along
which the input of the source point can flow to the position of
the sink point and break some security properties. However,
taint analysis often involves redundant paths, and efficient path
merging techniques can greatly enhance analysis efficiency.

Previous works of static taint analysis propose different
optimization strategies based on the characteristics of the ap-
plication scenario, from taint source identification, taint tag
management, taint propagation, and path merging. We also
propose our own optimization solutions in these four aspects,
and the innovation is described in detail in Section VIII-A.

C. Reaching Definition Analysis

Reaching definition analysis is a lightweight data flow
analysis, which is originally used to solve the following
problem: give a definition d to variable v, whether there is
a path so that the program point p can reach q, and v cannot
be changed in the process assignment [18]. If we regard p
and q as source and sink points, and assigning value d to
variable v represents marking the input as a specific taint value.
Then we can determine whether the taint value can reach sink
points through RDA. If it can be reached, we can observe
the possible values of the variable at point q to determine
whether the security property is violated. As a path-insensitive
may-analysis, RDA has two advantages in applying it to taint
analysis. First, due to path insensitivity, RDA does not need
to explore the branches like symbolic execution methods and
can efficiently traverse all statements without considering the
problem of state explosion. Secondly, RDA is a may-analysis
proven to reach the fixed point. Therefore, we can obtain the
possible values of the tainted variable at the sink point and
avoid the difficult problem of a symbolic solution.

D. Motivating Example

Figure 2 shows an example of an OS command injection
in the binary of an ASUS router. The process of triggering
the vulnerability is as follows: httpd queries its registered
mime_handler array after receiving the HTTP request. When
the array index points to function appGet.cgi, it further calls
the function do_ej, where it checks whether the value of
the output field in the HTTP request exists in the function
list stored by ej_handler. When the value matches the string
bwdpi_monitor_info, the function ej_bwdpi_monitor_info
is called and obtains the value of type and event from the
user’s input through the function websGetVar. The values of
type and event are finally passed to the bwdpi_monitor_info
located in the private library libbwdpi_sql.so. After an inap-
propriate string concatenation operation, the parameters of the
system function can be set by unrestricted user input.

We tried two SOTA works, SaTC and KARONTE, to
analyze httpd, but neither could produce the alert of the
above vulnerability. Our investigation indicates that existing

//httpd

main()->handle_request()->mime_handler

mime_handler

0x9C2C4 DCD aAppgetCgi ;"appGet.cgi*"

0x9C2C8 DCD aTextHtml ;"text/html"

0x9C2CC DCD aCacheControl ;"Cache-Control:..."

0x9C2D0 DCD sub_283D4 ;"handler address"

0x9C2D4 DCD appGet.cgi ;"handler name"

// httpd

appGet.cgi()->do_ej()->ej_handler

ej_handler

0x9B924 DCD BwdpiM ; "ej_bwdpi_monitor_info"

0x9B928 DCD sub_2DE14 ; "function address"

//httpd

1 int ej_bwdpi_monitor_info(webs wp, int argv){

2 int retval[5];

3 retval[1] = argv;

4 retval[0] = 0;

5 char *type = websGetVar("type", wp, "local");

6 if(!type)

7 type = "";

8 char *event = websGetVar("event", wp, "login");

9 if(!event)

10 event = "";

11 bwdpi_monitor_info(type, event, retval, wp);

12 return retval[0];

13 }

//libbwdpi_sql.so

1 int bwdpi_monitor_info(char *type, char *event, int retval, webs

wp){

2 char v74[1056];

3 if(f_exists("log")>0){

4 snprintf(v74, 0x400,

5 "echo event=%s >> log", event);

6 system(v74);}

7 ……
8 }

//httpd

1 char *websGetVar(char *var, webs wp, char *defaultGetValue){

2 char * result;

3 sym *sp = symLookup(wp->cgiVars, var);

4 if(!sp) return defaultGetValue;

5 result = sp->content.value.string;

6 return result;

7 }

Subgraph-1

Subgraph-2

Subgraph-3

Subgraph-4

Subgraph-5

Fig. 2: A simplified example of the zero-day vulnerability in
ASUS router. The function ej_bwdpi_monitor_info in the httpd
program introduces unrestricted user input in the websGetVar
function (blue part), resulting in OS command injection (red
part) in the library file libbwdpi_sql.

tools ignore the source and sink points. In terms of source,
because the program uses indirect jumps to point to the array
of stored functions, the functions stored in ej_handler and
mime_handler are not correctly added to the CFG. Eventually,
the input from websGetvar is not included in the analysis. In
terms of sink points, because the existing tools do not consider
the control flow from the main program to the shared link
library, the system-execution functions existing in the library
libbwdpi_sql.so are also not analyzed.

A straightforward idea to deal with the problem of losing
the source point and sink point is to solve the indirect calls.
However, for the former, the existing methods to resolve
indirect calls are not suitable for the scenario of firmware
static analysis due to low efficiency [15] or limited support for
multi-architecture [12]. For the latter, the reason why existing
work [3], [26] does not consider the propagation of data flow
in library code is the high overhead of taint tracking based
on symbolic execution. The average time to analyze a sample
by SaTC or KARONTE is 0.5∼30h, and the time is positively
correlated with the program scale and the number of paths to
be analyzed.

To efficiently and accurately discover the vulnerability
in the motivating example, our intuition is: taint tracking
from the source point to the sink point could be essentially
converted to a problem judging whether the input data is
reachable at a specific point. Thus, the motivating example
can be solved by using RDA based on an extended CFG
and accurate identification of taint sources. If the function
ej_bwdpi_monitor_info is successfully identified as an orphan
node in the CFG, then we can obtain the source point of
websGetVar. If we consider the control flow between the bin
and library, the system function at the sink point can also be
found. Finally, we can efficiently discover the vulnerability by
performing lightweight RDA between the determined source
point and sink point.

3

III. Challenges

Although the RDA based on enhanced control flow infor-
mation is suitable for analyzing taint-style vulnerabilities, we
have to face the three challenges categorized as follows when
the intuition is adopted on real-world firmware.

A. Comprehensive CFG Recovery

In the context of static analysis, CFG recovery helps
identify source and sink points in the program for subsequent
taint analysis. Existing work either builds an independent CFG
for each function [5] or directly adopts the CFG construction
strategy [3], [26] in angr [30]: gradually expanding nodes and
edges from identified program entry points.

However, these methods for constructing CFG are insuf-
ficient, resulting in some potential source points and sink
points not being considered in the taint analysis. Specifi-
cally, firstly, many functions of the program in the embedded
device are triggered through a callback mechanism. Such a
mechanism is represented as indirect calls and is difficult to
resolve. Secondly, current works do not analyze the control
flow between the target program and its loaded library for
efficiency. Note extending control flow analysis to libraries is
not challenging (e.g., in angr can be enabled by load_libs flag).
However, introducing the control flow between Bin and Lib
dramatically increases the time of the analysis, making the
symbolic execution-based method not scalable. Therefore, the
CFG needs to accurately identify the registered functions and
take into account the control flow between the program and
the loaded library.

B. Precise Source Point Identification

In the scenario of firmware programs, various vendors
use different functions to parse input data from the received
network packet, where these functions are often regarded as
the starting point of taint analysis.

Existing static analysis methods either manually specify
source functions, or automatically locate the locations of these
source points through shared strings. However, the former
method is very dependent on expert knowledge and needs to
be customized to specify source functions for different devices.
The latter method also has two disadvantages. One is that
the precise matching strategy does not consider the possible
semantic differences between the front and back ends when
parsing a key string. The second is that all the parameters and
return values of the function at the source point are marked as
tainted, which leads to false positives from over-tainting.

C. Efficient Taint Tracking

Schemes of taint tracking of user input affect the efficiency
of firmware static analysis. As discussed in Section II-D, using
RDA-based taint tracking schemes can detect taint-like vul-
nerabilities faster than symbolic execution-based methods [3],
[26].

Unfortunately, using RDA-based taint tracking still has two
obstacles in practice. Firstly, there are massive paths between
source points and sink points, which leads to the problem of
path explosion in RDA. Secondly, if each calling function is
considered in the inter-procedural analysis, data flow tracking

Merged Paths

DU/UD Graph

Efficient Dataflow Analysis

Get

Paths

Enhancing
Control flow

Firmware

Preprocess

Alert

Calling

convension

Function

Boundary

Symbol Name

Enhanced CFG Recovery

Recover

Function

Information

Bin-CFG

Lib-CFG

Link Library

CFG

Border Binary Finder

Vulnerability

Policy

Sink Points

Source

Points
Potential Paths

Candidate Source

Functions

Merge

Paths

LOC

tracking

Input Source Identification

Fuzzy Match

Taint Inspection Engine

Check

Rules

Check Input

Function

Shared

Library

Border

Binary

Front-

end File

Fig. 3: Overview of HermeScan.

becomes very complicated. The data flow of some callee
functions is not directly related to user input. Thus, efficient
taint tracking should be capable of dealing with complex inter-
procedural analysis and path explosion.

IV. Design

A. Overview

To address these challenges, HermeScan adopts three key
schemes: enhanced CFG recovery, accurate source input identi-
fication, and efficient dataflow analysis. As shown in Figure 3,
HermeScan analyzes a firmware following five steps.

Border Binary Finder: HermeScan takes the same method
as SaTC [3] to locate the border binary. We extract the
file system of the firmware and collect the shared strings
referenced both in the front-end and back-end files. The binary
file containing the most matching shared keywords is marked
as the border binary.

Enhanced CFG Recovery: Then in the enhanced CFG
recovery step, HermeScan obtains function information from
border binaries, including function bounds, calling conven-
tions, and symbolic names. Taking advantage of the above
information, HermeScan converts the binary to an intermediate
representation and builds a more comprehensive CFG.

Source Input Identification: HermeScan first uses fuzzy
matching to locate candidate source functions through the
shared strings of the front and back ends to reduce false
negatives of exact matching. Then it uses an RDA-based
method to determine the functions representing user input
from the candidates and assign suitable taint marks to their
parameters, which avoids false positives caused by over-taint.

Efficient Dataflow Analysis: The module adopts a path
merging strategy to alleviate path explosion and designs a
lightweight, context-sensitive, on-demand RDA to improve
the efficiency of taint tracking along each path.

Taint Inspection Engine: The taint detection engine ob-
serves the data flow information from the def-use graph at
sink points and checks whether it breaks the detection rule of
vulnerability.

4

B. Enhanced CFG Recovery

The richness of information in the CFG profoundly affects
the identification of source points and sink points, and further
affects the false negative rate of taint analysis. From a practical
perspective, we solve the shortcomings of existing solutions
in terms of function boundary identification, symbol name
finding, calling convention recovering, etc., to provide a solid
foundation for HermeScan’s RDA as much as possible.

Function boundary: The more functions are identified,
the wider the scope of the analysis can be extended. Thus, in
addition to functions automatically recognized by the disas-
sembler [9], HermeScan scans the disassembled code of the
whole binary to recognize function boundaries missed by the
disassembler, by matching the features (e.g., stack operations)
of the function prologue under different architectures.

Symbol name: The symbol name is used to identify which
library functions are loaded by the binary. Both SaTC and
KARONTE rely on angr to recover symbol names of external
library functions in the binary program by analyzing the
section header table. However, the approach is not sufficient
for binaries that have stripped section header tables, leading
to some function symbol information being missed.

To address this issue, HermeScan parses ELF files based
on the execution view as a supplement [2]. Specifically,
our approach interprets the program header table to recover
symbols. Firstly, we traverse all program header tables and
identify the PT_DYNAMIC segment corresponding to p_type.
Then, we search for the value of the DT_SYMTAB tag in the
segment PT_DYNAMIC to locate the address of the ELF symbol
table. Finally, we ensure more symbol information is obtained
from the symbol table.

Calling convention: HermeScan extends angr’s default
calling convention and implements a more aggressive but com-
plete recovery strategy. For the function’s calling convention
that is not successfully acquired by angr, HermeScan assigns
preset calling conventions (CC) according to the architecture
of the program (e.g., the default parameter call for MIPS
architecture is to use a0-a3 registers). Providing defaulting
value for CC ensures subsequent data flow analysis is closer to
the may-analysis. Since our taint tracking determines whether
to step into a function based on whether its parameters are
tainted, if a function’s CC is not recognized, its argument is
treated as None, which may lead to false negatives.

After obtaining the above knowledge, HermeScan en-
hances the construction of CFG with the aid of this informa-
tion. Different from constructing CFG adopted by SaTC and
KARONTE, HermeScan treats each function as a dominant
node to build independent control flow subgraphs and then
connects them by the jump or call instructions. At the same
time, HermeScan establishes the Lib-CFG for the shared
library loaded by the binary and utilizes the symbol name to
connect the Bin-CFG with Lib-CFG.

C. Source Input Identification

The precise identification of input sources is essential to
reducing false positives caused by over-tainting and false neg-
atives caused by the loss of source points. HermeScan proposes
Algorithm 1 to achieve precise source input identification,

which comprises two parts. The first part employs a fuzzy
matching strategy to obtain more candidate source functions.
The second part assigns appropriately tainted initial values to
return values or parameters of the source function by checking
candidate functions.

1) Fuzzy Matching Strategy: HermeScan employs a fuzzy
matching strategy to screen out the shared strings in front-end
and back-end files. Unlike SaTC and KARONTE, we consider
both word-form similarity and semantic similarity to match
keywords in addition to string consistency when the back-end
program parses the strings from the front end.

MATCH(S 1, S 2) =

True, FormatS im(S 1, S 2) ≥ α or

S emanticS im(S 1, S 2) ≥ β
False, Others

(1)

Equation 1 defines the matching result of strings s1
and s2, where it holds in two cases: (1) when the words-
form similarity FormatSim(s1, s2) exceeds threshold α, or (2)
when the semantic similarity SemanticSim(s1, s2) exceeds than
threshold β.

FormatS im(S 1, S 2) = 1 − Edit(S 1, S 2)/(L(S 1) + L(S 2)) (2)

To measure word-form similarity, HermeScan normalizes
the Levenshtein Distance (or Edit Distance) [21] as shown in
equation 2. The function L represents the length of the string.
The Levenshtein Distance represents the minimized number
of edits (delete, insert, replace a character at one time) to
transform one string to another. A lower edit distance indicates
higher string similarity. For instance, consider the keyword
hostname_1.1 in the front-end file, which sets the parameter
of a device. It shares a similar form with the back-end string
hostname_%s concatenated with the device ID. These pairs
are shared keywords and could be identified through the fuzzy
matching of word form similarity.

S emanticS im(S 1, S 2) =

 Cosine(S 1, S 2), Others
0, LCS (S 1,S 2)

Min(L(S 1),L(S 2)) < θ
(3)

For semantic similarity, HermeScan utilizes the Bidirec-
tional Encoder Representations from Transformers (BERT) [8]
to calculate the cosine similarity of string embeddings. As a
pre-training model, BERT is widely used for various NLP
tasks such as semantic search and question answering. In
our approach, we utilize the efficient and performant all-
MiniLM-L6-v2 model [37], trained on a diverse dataset of
over 1 billion training pairs. To further make the efficiency
scalable, semantic similarity calculation is enabled when the
ratio of the longest common subsequence of two strings to the
length of the shorter string surpasses the threshold θ. Seman-
tic similarity further complements fuzzy matching, enabling
associations to be established based on semantic inference.
For example, the string request from %s is banned for
security appears in the front end and the sec_ip_ban can
be linked through semantic analysis, with the latter recognized
as a common keyword in the binary.

5

Algorithm 1 Input identification algorithm
Input: backend_ f iles(BFS), f rontend_ f iles(FFS)
Output: source_ f uncs

1: shared_strings← FuzzyMatch(BFS , FFS)
2: candidate_ f uncs← GetFuncs(shared_strings)
3: for each f unc ∈ candidate_ f uncs do
4: params, ret ← GetCallingConvention(f unc)
5: caller_ f unc← GetHostFunc(f unc)
6: in_ddg← De f UseAnalysis(f unc, params)
7: out_ddg← De f UseAnalysis(caller_ f unc, ret)
8: for each param ∈ params do
9: taint_sources← ValueS tored(param, in_ddg)

10: taint_constraints← ConstraintIn f er(f unc, param)
11: end for
12: taint_sources← ValueUsed(ret, out_ddg)
13: if taint_sources , Null then
14: source_ f uncs← f unc, taint_constraints
15: end if
16: end for

Finally, HermeScan recognizes candidate functions that
reference these strings, which are likely to parse external inputs
and store them in the function’s arguments (more specifically,
the memory pointed by the arguments) or return value. Cor-
responding to the example in Listing 2, the words type and
event are matching keywords, and the function websGetVar
that refers to these keywords as parameters is considered a
candidate function.

2) Candidate Function Checking: After recognizing candi-
date functions, we may assume all their arguments and return
values as variables storing external inputs, i.e., marking them
as taint sources. However, overestimating all parameters as
taint sources introduces false positives, and marking return
values that are not subsequently used as taint sources causes
additional taint analysis overhead. Thus, we further conduct
a candidate function checking to remove infeasible candidate
functions and mark parts of the function arguments or return
values as taint sources.

The general idea is to check whether the parameters would
receive values from external input and whether the return
values would be used by following operations. Specifically,
as shown in Algorithm 1, inside each candidate function, we
track the data flow of each parameter via def-use analysis.
If the memory pointed by the parameter is stored with some
values, it may serve as a taint source that receives external
inputs (lines 8-9). Otherwise, this parameter is not a taint
source. Outside the candidate function, we track the dataflow
of its return value and examine whether it will be used by the
following operations. If so, the return value will be marked
as a taint source (line 12). Thus, in Figure 2, none of the
parameters of the candidate function websGetVar is a taint
source (Subgraph-4). The variables event and type that are
used as the return value of the function websGetVar(line 5
and line 8 in Subgraph-3), are taint sources.

In practice, we found some taint sources have length
restrictions. To further improve the precision of the analysis,
we also employ a constraint inference to collect some con-
straints through conducting the def-use analysis and value set
analysis (VSA) on the taint sources. Specifically, the constraint
inference occurs when the following conditions are met: 1) the
taint source is related to the pointer of the destination address
in the string-copy functions that are summarized in Table I.
2) the parameter that is not the taint source is used as the

1 char *dlink_webGetVarN(char *var, webs wp, int len)
2 {
3 char *v1, *result;
4 sym *sp = symLookup(wp−>cgiVars, var);
5 v1 = (char *)malloc(len);
6 strncpy(v1, sp−>content.value.string, len−1);
7 result = v1;
8 *(result + len −1) = 0;
9 return result;

10 }

Listing 1: Pseudocode for illustrating constraint inference.

length limitation of memory-copy functions. Then we utilize
VSA to establish the constraint between the limit length in
the memory-copy function and the parameter of the candidate
function and propagate the constraint from the summarized
function back to the taint source in the candidate function. Our
VSA is flow-sensitive and accounts for changes in dataflow
facts made by each statement. Finally, a value flow graph
(VFG) is built based on VSA, where each node represents
the states that store the value range of the register and the
memory.

We take Listing 1 to better illustrate our constraint in-
ference approach. First, through def-use analysis, we could
find the third parameter of the function dlink_webGetVarN
flows into the third parameter in the summarized function
strncpy, and the destination address of strncpy eventually
flows to the return value of the caller function. Then we
build a VFG for the candidate function through VSA. By
obtaining the status of the VFG node located at the call site
of strncpy (line 6), the third register value of the strncpy is
expressed as uninitialized_inital_r2+0xffffffff, where the unini-
tialized_inital_r2 represents the parameter len and 0xffffffff
refer to -1. Similarly, at the basic block of the exit statement
(line 9), the register stored the return value of the function is
expressed as v1_(len-1)+00, which means that the return value
is equal to the value of variable v1, and the value constraint is
a string with a length of len-1 concatenated with a truncation
character. Thus, we can infer that the constraint of the taint
source of dlink_webGetVarN is limited by the value of its
third argument minus one.

Eventually, HermeScan heuristically defines the input taint
value on the appropriate parameter or return register at the
sources according to the vulnerability type and collected length
constraint. Variables assigned initial values are propagated to
other used variables along with subsequent data flow anal-
ysis and continuously updating the data dependency graph.
Although it is theoretically more precise to explore along the
path and solve for inputs that satisfy the constraints, symbolic
execution faces difficulties in efficiency and accuracy. Our
approach is faster and is adapted to subsequent customized
RDA.

D. Efficient RDA Analysis

We design a unique taint tracking scheme (LCO Inter-
procedural Analysis) according to three principles and adopt a
path merging strategy to alleviate the path explosion problem.
These optimization methods constitute an efficient data flow
analysis module that balances efficiency and accuracy.

1) LCO Inter-procedural Analysis: We follow three prin-
ciples to perform efficient dataflow analysis on the user input:

6

Algorithm 2 On-demand Interprocedural Analysis
Input: f unc
Output: result

1: taint f lag← False
2: params← GetParams(f unc)
3: for each param ∈ params do
4: if IsTaint(param) then
5: taint f lag← True
6: end if
7: end for
8: if taint f lag then
9: if IsImport(f unc) then

10: if IsS ummary(f unc) then
11: result ← S ummaryValue(f unc)
12: else
13: lib← S earchLib(f unc)
14: result ← S tepIntoLib(lib, f unc)
15: end if
16: else
17: result ← S tepInto(f unc)
18: end if
19: end if

lightweight, context-sensitive, and on-demand.

Lightweight principle. As discussed in section III, the
dataflow analysis is quite faster than symbolic execution.
HermeScan leverages RDA-based taint tracking instead of
heavy symbolic execution-based taint tracking methods used
in SaTC and Karonte.

Specifically, angr’s RDA module provides the most ba-
sic intra-procedure analysis for HermeScan. It lifts assembly
instructions to VEX IR and performs RDA on the built
CFG with the classic worklist algorithm [23]. For the input
variable of interest, an indirect Def-Use graph is generated,
where each node represents a Def of the variable, and each
edge indicates the variable is Use after a Def. In a specific
implementation, the given variable is distinguished by five
categories: temporary variables, global variables, stacks, heaps,
and registers, resulting in the better marking of the definition
or use of the variable at a certain address.

Context-sensitive principle. Dataflow analysis often in-
volves function calls, therefore interprocedural analysis is
necessary. Unfortunately, the method based on angr’s out-of-
the-box RDA cannot be applied to actual firmware analysis
because it does not consider the context of inter-procedural
calls.

Thus, HermeScan extends angr’s intra-procedural RDA to
inter-procedural and considers context information to enable
fine-grained dataflow analysis. During function calls, the func-
tion parameters are marked as the definition of temporary
variables. Their values are assigned to the definition obtained
from the register variable or stack variable in the caller func-
tion, following the calling convention. Upon returning to the
caller function, HermeScan merges the definition values of the
five types of variables (temporary variables, global variables,
stacks, heaps, and registers) with different return addresses and
overwrites their original values in the caller function.

In addition, for aliasing issues, such as indirect calls, Her-
meScan calculates the value of the relevant register from the
Def-Use graph based on contextual information and resolves
possible jump addresses for further analysis. Our approach
does not pursue complete and precise aliases like Emtaint [6],
but rather a demand-driven analysis without additional over-

TABLE I: Summary of the common Libc functions.

Operation Function Name

String Copy
strcpy, strncpy, strlcpy, strcpy_chk, strcat,

strncat,sprintf, snprintf, sprintf_chk, sscanf,
strdup, vsnprintf, memcpy

String Index strstr, strchr, strrchr
String to Data atoi, atol, atoll, strtoll

String Split strtok, strsep
Others memset, strlen

head. The limitations of the way we handle aliases are dis-
cussed in Section VII.

On-demand principle. For the sake of efficiency, static
analysis often adopts on-demand tracking during inter-
procedural analysis. Existing methods choose whether to track
or not by judging whether the parameters of the function are
tainted. However, there are still two deficiencies: one is that the
method relying on symbolic execution to explore the path is
limited by the storage capacity of the path state, which makes
it difficult to track on demand in nested functions; the other
is that when it involves calling external library functions, the
existing method only summarizes the common Libc library
functions and skips other library functions.

HermeScan proposes on-demand tracking to solve the
above difficulties. First of all, our method judged whether a
variable is tainted from the data-dependent graph updated at
analysis without involving path storage; second, we step into
library functions whose parameters are tainted to form a deeper
data flow analysis. Our approach is described in Algorithm 2
in detail: HermeScan firstly prioritizes tracking explicit taint
propagation by identifying functions with tainted parameters
on the data-dependent graph (lines 1-8). Then for functions
that are not imported by external libraries, HermeScan directly
steps into interprocedural RDA (lines 16-17). Additionally,
HermeScan summarizes the return values of commonly used
Libc functions in Table I. In the context of RDA, a function’s
summary is its effect on the use-def value of various variables,
which differs from those used in symbolic execution. Finally,
if the function in question does not fall into these categories,
HermeScan performs an RDA on the Lib-CFG of the corre-
sponding library function (lines 13-14).

Example. Listing 2 shows an example of LCO inter-
procedural analysis. Firstly, in the setup_mydlink_wizard
function, the data flow analysis module treats getenv as a
source point and sets a value of an overly long string for v4 as a
definition according to the rules for detecting buffer overflows
(line 4). Then since the second parameter of the updownser-
vice function comes from v4, a tainted register variable, LCO
inter-procedural analysis chooses to step into updownservice
for analysis (line 5). The getresponsepage and postnvram
functions are not analyzed because their parameters are not
tainted (lines 6-7). Similarly, the parameters of the function
func2 in the updownservice are also tainted, and the LCO
inter-procedural analysis goes further into the func2 (line 10).
Finally, after encountering the calling of strcpy in func2, we
apply the function summary of strcpy, which fills the defined
value of the stack variable corresponding to the buf variable
with the value pointed to by the pointer a1 (line 16).

2) Path merging strategy: HermeScan designs a path merg-
ing strategy to identify and merge paths repeatedly passed in
the function call graph, thereby reducing redundant analysis

7

1 / / s s i
2 void setup_wizard_mydlink(int a1){
3 char *v4;
4 v4 = getenv(" sys_serv ice ");
5 updown_services(0, v4);
6 post2nvram(a1);
7 response_page = get_response_page();
8 }
9 int updown_services(int mode, char *sys_service){

10 if(mode) return func2(sys_service);
11 return func3(sys_service);
12 }
13 int func2(char *a1){
14 char buf[1028];
15 if (a1 && *a1){
16 strcpy(buf, a1);
17 }
18 }

Listing 2: Pseudocode for illustrating LOC Inter-procedural
Analysis, which is taken from CVE-2022-41451. The
setup_wizard_mydlink function reads the environment variable
of sys_service, which is finally passed to the strcpy function
in func2, causing a stack overflow.

effort. The strategy leverages the path-insensitive feature of
RDA and employs two schemes: multi-source taint and
multi-sink observation based on control flow reachability.

Multi-source taint: For a function with multiple source
points, existing firmware static analysis schemes [3], [26],
[11], [5] start with each source point as a taint point and
track its taint propagation process independently. In the context
of RDA, we can track the use-definition assignment of all
variables in the program. Thus HermeScan could taint each
source point with a different label in the function that contains
multiple input source points. In this way, HermeScan tracks
and distinguishes the propagation process of multiple taint
values in one RDA analysis, thereby reducing the cost of
starting analysis by treating these source points as different
starting positions.

Multi-sink observation: Since we use path-insensitive
RDA, any function reachable from the call graph starting from
a specified function is analyzed theoretically. Consequently, all
functions containing sinks in the same call graph are covered
in one RDA analysis. HermeScan avoids analyzing these sink
points multiple times by setting several observation points in
one analysis pass.

Figure 4 depicts how paths are merged under different
strategies. Enabling HermeScan’s path merging strategy allows
one RDA pass to cover two source points in function A and
three sink points in functions A, B, and D, reducing the number
of analyzed paths from 7 to 2. In contrast, SaTC’s strategy
partially merges duplicated paths, reducing the number of
analyzed paths from 7 to 3. The path from source point C1
to sink point D1 is retained to account for cases where our
on-demand data flow tracking may not enter function C if its
parameters are not tainted.

E. Taint Inspection Engine

The taint inspection engine can be regarded as a collection
of vulnerability pattern policies, which define vulnerability-
related sensitive functions and detection rules.

For the sensitive functions, we summarize functions related
to 10 types of vulnerabilities (which is more than SaTC,

Sink B1
Source

C1

Source

A1

Source

A2

Sink A1

Sink D1

Function A

Function CFunction B

Function D

HermeScan Strategy:

1) Source A1,A2->Sink

A1,B1,D1

2) Source C1->Sink D1

Source

A1

Source

A2

Source

C1

Sink A1 Sink B1 Sink D1

Before Merging:

1) Source A1->Sink A1

2) Source A2->Sink A1

3) Source A1->Sink B1

4) Source A2->Sink B1

5) Source A1->Sink D1

6) Source A2->Sink D1

7) Source C1->Sink D1

Source

A1

Source

A2

Source

C1

Sink A1 Sink B1 Sink D1

SaTC Strategy:

1) Source A1->Sink A1,

Sink B1, Sink D1

2)Source A2->Sink A1,

Sink B1, Sink D1

3)Source C1->Sink D1

Source

A1

Source

A2

Source

C1

Sink A1 Sink B1 Sink D1

Fig. 4: Schematic diagram of path merging strategy.

KARONTE) in Table II by synthesizing the vulnerability
patterns and the characteristics of the back-end programs in
embedded devices. The vulnerability detection rules employed
by HermeScan distinguish it from other approaches like SaTC
and KARONTE. Unlike these methods, HermeScan does not
focus on solving the input of collected path constraints. In-
stead, HermeScan observes all possible definition values of
parameters within a reachable sensitive function and evaluates
if these values meet the conditions for triggering a vulnerabil-
ity. We take the buffer overflow and command line injection
vulnerability as examples to illustrate how HermeScan detects
vulnerabilities.

Buffer overflow: For detecting buffer overflow, the initial
taint source value is a string of a certain length, which may be
truncated or concatenated during dataflow analysis. Therefore,
when it is passed to the parameter of the sensitive function, the
length of the string may change. The alert is produced only if
the length of the copied data exceeds the destination storage
space.

Command line injection: For command-line injection
vulnerabilities, alerts are generated based on the presence
of sanitization of strings originating from taint sources. As
a may-analysis, HermeScan examines all potential values of
parameter variables within functions like system and popen. If
the value of the string referenced by such a variable includes a
string from the taint source and the information of the string is
complete, we can infer that the system may execute a malicious
command line command.

V. Implementation

We implemented the prototype system of HermeScan with
around 4K lines of Python code. The CFG recovery module
is based on IDA 7.6 [9] and angr 9.2.1 [30]. We extend IDA’s
automatic function identification with function prologue and
export the function start address from IDA for angr to build
CFG. For source input identification, we utilize the R package
text2vec [27] to calculate the Levenshtein distance between
words for fuzzy matching and implement candidate function

8

TABLE II: Sensitive functions used as sink points for different
types of vulnerabilities

Vulnerability Type Sink Functions

CWE-119 strcpy,strncpy,sprintf,snprintf,memcpy,strcat,
strncat,sscanf,gets

CWE-78 execv,system,twsystem,cstesystem,dlopen,popen,
dosystemcmd

CWE-134 printf,vsprintf
CWE-79 puts,printf
CWE-319 openurl, system
CWE-337 time, rand, srand
CWE-352 same as CWE-78
CWE-22 fopen, unlink
CWE-89 exec_sql,runsql,sqlite3_ex

checking with Python code. The value of hyperparameters α,
β, and θ equal 0.75, 0.83, and 0.5, which are selected by a grid
search to consider the trade-off of efficiency and effectiveness.
The efficient data flow analysis is built on top of angr’s RDA
module. We extend this module from simple intra-procedural
analysis to support context-sensitive inter-procedural analysis.
Furthermore, we implement a path-merging strategy to allevi-
ate the path explosion problem. In the taint inspection module,
we define the sink functions of 10 kinds of vulnerabilities
and the corresponding detection rules. The module is well
extensible to support additional rules defined by the user.

VI. Evaluation

We conducted our evaluation to answer the following
research questions:

• RQ1: How well does HermeScan find vulnerabilities on
real-world devices? How effective is it compared to state-
of-the-art tools?

• RQ2: How does the optimization of control flow recovery
contribute to the vulnerability detection of HermeScan?

• RQ3: Can HermeScan’s input source identification make
the analysis more accurate? How does it work?

• RQ4: Can HermeScan’s path merging strategy alleviate
the path explosion problem?

• RQ5: How are HermeScan’s control flow recovery and
static analysis capabilities?

A. Experiment Setup

To evaluate the effectiveness, accuracy, and efficiency of
our vulnerability discovery approach, we thoroughly assessed
two datasets on an Ubuntu 21.04 LTS system equipped with
a 4-core Intel CPU and 32 GB RAM. The datasets consist
of the 0-day and N-day datasets and are all the firmware of
Linux-based devices without obfuscation and encryption.

0-day dataset: To minimize the bias, We selected 30 latest
firmware samples from 8 manufacturers, including LINKSYS,
ASUS, Netgear, Tenda, TOTOLINK, TrendNet, D-Link, and
TP-LINK, as our zero-day dataset. These firmware samples
in Table III cover 19 series and were downloaded from the
manufacturer’s official website. Among the samples, 19 are
WiFi-6 SoHo routers [30], which are the flagship products
of the vendors. The average size of the samples is 28.2
megabytes, and they cover the following four architectures:
ARM32, ARM64, MIPSEL, and MIPSEB.

N-day dataset: The N-day dataset consists of 98 older
versions firmware, which is used for large-scale testing to

complement the effectiveness of our method. We selected
firmware samples covering 25 series from 9 popular IoT
manufacturers. These 98 firmware contain are orthogonal to
our zero-day dataset. The source of the dataset is divided into
two parts, one is taken from the 85 samples disclosed in the
papers of SaTC and KARONTE, and the other is taken from
the 13 samples downloaded from the official website of the
manufacturer. Table VI shows the serial information about the
firmware sample.

SOTA solutions to compare with: We compared HermeS-
can with KARONTE [26] and SaTC [3], the state-of-the-art
static analysis tools for detecting taint-style vulnerabilities in
IoT devices. Both KARONTE and SaTC use symbolic execu-
tion to achieve their taint tracking. To ensure the fairness of
the experiment, we tested two types of vulnerability detection
supported by all three tools: bof (buffer overflow) and cli
(command line injection).

Results validation: For each generated alert, we manually
confirm whether there is a vulnerability based on the input
information generated by the three tools. If an alert is identified
as a vulnerability it is a true positive, otherwise, it is a false
positive. In this paper, we marked the number of true positive
alerts as TP and the number of false positive alerts as FP.
Considering that multiple true positive alerts may be generated
for the same vulnerability, we mark the number of unique
vulnerabilities found as Vul.

B. Bug Finding (RQ1)

In this section, we first count the number of vulnerabili-
ties discovered by HermeScan and then compare HermeScan
with the SaTC and Karonte in terms of effectiveness, accu-
racy, and efficiency on two datasets.

1) Zero-day Dataset: Number of vulnerabilities: After
excluding some duplicate vulnerabilities, we confirmed the
vulnerabilities found by HermeScan in Table IV. HermeScan
ultimately found 76 known vulnerabilities (we also discovered
these known vulnerabilities for the first time but have been
assigned to other researchers.) and 87 unknown vulnerabilities
(69 are assigned CVE numbers, and the rest are pending), prov-
ing its ability to detect vulnerabilities on real-world firmware.

We further analyzed vulnerabilities found only by HermeS-
can and identified the underlying reasons. The reasons could
be summarized in the following three points: First, HermeScan
builds the CFG that identifies more functions containing the
source and sink points. Second, HermeScan uses input source
recognition to determine the source function instead of the
shared keyword reference used by SaTC and Karonte, which
reduces missing some source points. Third, HermeScan has set
up detection rules for more types of vulnerabilities, which can
detect other types of vulnerabilities except for bof and cli.

As a comparative SOTA, 5 of the 32 vulnerabilities found
by SaTC are unknown vulnerabilities and 27 are known vulner-
abilities. As shown in Figure 5-A, 29 of the 32 vulnerabilities
can also be found by HermeScan, and 3 unique bof-type
vulnerabilities can only be found by SaTC. The reason why
HermeScan can not find these vulnerabilities is that angr does
not correctly calculate the size of the stack space, resulting in
the tainted data not covering the top of the stack when the
strcpy-like function is called, thus no alert is generated.

9

TABLE III: 0-day dataset evaluation results of HermeScan, SaTC, and KARONTE. The program name refers to the analyzed
boundary binary. We counted the number of alerts generated by the tool (Alerts), the number of confirmed vulnerabilities (Vuls),
and the tool execution time (Time). Italics in the time column represent unexpected exits or non-execution of the sample. Bold
in the Vendor-Model column means HermeScan finds more vulnerabilities on this sample than other tools. The number of Vuls
in () indicates the number of unique vulnerabilities after deduplication.

HermeScan SaTC Karnote

Vendor&Model Program Name Alerts Vuls
(bof+ci)

Vuls
(other) Time Alerts Vuls

(bof+cli) Time Alerts Vuls
(bof+cli) Time

LINKSYS MR7350 bluetoothd 0 0 0 3min 1 0 30min 0 0 2h22min
LINKSYS E9450 httpd 0 0 0 11min 0 0 24min 0 0 2h08min

LINKSYS EA4500 twonkymediaserver 1 1 0 17min 0 0 26h 0 0 1h21min
ASUS GT-AX6000 httpd 0 0 0 9min 5 0 27h28min 0 0 4h31min
ASUS GT-AC2900 cfg-server 0 0 0 12min 2 0 23h58min 0 0 7min
ASUS RT-AX56U httpd 4 4 0 13min 5 0 26h21min 0 0 48min

Tenda AX-12 httpd 9 6 3 1h20min 0 0 12min 0 0 3h36min
Tenda AX-3 httpd 17 11 0 2h23min 27 6 36h 0 0 1h24min

Tenda AX-1803 thttpd 20 12 2 2h03min 38 8 16h28min 0 0 5min
Tenda AX-1806 thttpd 20 14 0 2h11min 44 13 18h53min 0 0 42min

Tenda W15E httpd 17 15 2 2h39min 50 5 21h11min 0 0 1h22min
TOTOLINK T8 cstecgi 14 4 0 14min 0 0 3min 0 0 2min

TOTOLINK LR350 cstecgi 24 9 0 13min 0 0 47min 0 0 24min
TOTOLINK A7000 cstecgi 18 12 0 12min 0 0 4h09min 0 0 39min
TOTOLINK A8000 cstecgi 29 13 0 13min 2 0 39min 0 0 6h04min

D-LINK COVR-1201 prog.cgi 9 4 2 5h27min 0 0 10min 0 0 4h42min
D-LINK COVR-1210 prog.cgi 8 4 2 5h16min 0 0 10min 0 0 4h28min

Netgear RAX-10 net-cgi 6 0 0 19min 0 0 49min 0 0 2h20min
Netgear RAX-30 ntgr_ra_iot 0 0 0 6min 8 0 5h54min 0 0 3h10min

Netgear RAX-120 net-cgi 1 0 0 37min 0 0 1h09min 0 0 72h
Netgear MR-62 httpd 1 1 0 51min 0 0 23h56min 4 0 2h56min

Trendnet twe 829 samba_multicall 1 1 0 30min 0 0 2min 0 0 1h57min
Trendnet tew 823 ssi 39 17 0 9min 0 0 11min 0 0 1h54min
Trendnet tew 827 ssi 31 18 2 18min 0 0 27min 0 0 59min
Trendnet tew 818 rc 12 5 0 14min 0 0 18h32min 0 0 2h14min
Trendnet tew 752 cgibin 5 1 0 9min 0 0 20min 0 0 2h10min
TP-LINK AX3000 fapi_wlan_cli 0 0 0 0min 0 0 15min 0 0 2h42min

TP-LINK XDR1850 dms 2 0 0 18min 0 0 3min 0 0 2min
TP-LINK XDR3060 dms 3 2 0 1h44min 0 0 2min 0 0 28min
TP-LINK XTR7880 dms 6 2 0 2h10min 0 0 3min 0 0 19min

Total / 297 156(152) 13(11) 30h4min 182 32(32) 252h19min 4 0 127h58min
Average / 9.9 5.2 / 1h7min 6.66 1.9 8h25min 0.13 0 4h16min

TABLE IV: Known and Unknown vulnerabilities found by
HermeScan on the zero-day dataset.

Vendor & Model Number Known Vulnerabilities Unknown Vulnerabilities
LINKSYS EA4500 1 / 1 unassigned
ASUS RT-AX56U 4 / CVE-2022-46039 to CVE-2022-46042

Tenda AX-12 9
CVE-2022-45995, CVE-2022-45979,
CVE-2022-45980, CVE-2022-27375,

CVE-2022-27374

CVE-2022-37292,CVE-2022-28082,
CVE-2021-45392, CVE-2021-45391

Tenda AX-3 11

CVE-2023-27042, CVE-2022-27239,
CVE-2022-24995 ,CVE-2022-24163,
CVE-2022-24162, CVE-2022-24160,
CVE-2022-24158, CVE-2022-24142,
CVE-2022-24145 to CVE-2022-20147

/

Tenda AX-1803 14
CVE-2022-37817 to CVE-2022-37824,
CVE-2022-34595, CVE-2022-34596,
CVE-2022-42086, CVE-2022-42087

/

Tenda AX-1806 14
CVE-2022-32071 to CVE-2022-32073,
CVE-2022-25546 to CVE-2022-25555,

CVE-2022-32069
/

Tenda W15E 17 /

CVE-2022-40448 to CVE-2022-40455,
CVE-2022-40457 to CVE-2022-40461,
CVE-2022-40462 to CVE-2022-40466

TOTOLINK T8 4 / CVE-2021-46373 to CVE-2021-46376

TOTOLINK LR350 9 /
CVE-2022-44249 to CVE-2022-44252,

5 unassigned

TOTOLINK A7000 12 CVE-2022-37076 to CVE-2022-37084,
CVE-2022-27003 to CVE-2022-27005 /

TOTOLINK A8000 13 / CVE-2022-44328 to CVE-2022-44340
D-LINK COVR-1201 6 / CVE-2022-42155 to CVE-2022-42161

Netgear MR-62 1 / 1 unassigned
Trendnet TEW-829 1 / 1 unassigned

Trendnet TEW-823 17 /
CVE-2022-41449 to CVE-2022-41459
CVE-2022-41461 to CVE-2022-41466

Trendnet TEW-827 20
CVE-2019-13276 to CVE-2019-13279,
CVE-2021-14074 to CVE-2021-14081,
CVE-2019-13148 to CVE-2019-13155,

/

Trendnet TEW-818 5 / 5 unassigned
Trendnet TEW-752 1 / 1 unassigned
TP-LINK XDR3060 2 / 2 unassigned
TP-LINK XTR7880 2 / 2 unassigned

Total 163 76 87

Effectiveness: The result in Table III shows the effective-
ness of HermeScan. In detecting bof and cli vulnerabilities,
HermeScan reports 120 (=152-32) more vulnerabilities than
SaTC, and 152 (=152-0) more vulnerabilities than KARONTE.
HermeScan outperforms SaTC in detecting vulnerabilities on
22 samples (as indicated in bold). In addition, HermeScan also
found 11 other types of vulnerabilities, including CWE-337
and CSRF.

Accuracy: To illustrate the accuracy of the analysis, we
counted the true positives (TP) and false positives (FP) for
alerts produced by SaTC and HermeScan. As shown in

TABLE V: 0-day dataset evaluation results of HermeScan,
SaTC, and KARONTE in terms of accuracy. HermeScan(Dis-
FM) refers to disabling fuzzy matching, and HermeScan (Dis-
IC) refers to disabling input function checking. TPR stands for
true positive rate, and FPR stands for false positive rate.

COMPARE ALERT TP FP TPR FPR
HermeScan 297 241 56 0.81 0.19

HermeScan(Dis-FM) 228 178 50 0.78 0.22
HermeScan(Dis-IC) 386 241 135 0.62 0.38

SaTC 182 77 105 0.42 0.58
KARONTE 4 0 4 0 1.00

Table V, HermeScan outperforms SaTC in TPR by 39%.
The reason for the gap in TPR between the two tools is
that SaTC ignores the input value constraints at the source
points, while HermeScan checks the source function to provide
reasonable input values. For example, the function websGet-
VarN("PPPOE_USERNAME", 32) reads the value with the
key “PPPOE_USERNAME” from the local form. SaTC treats
the string value returned by this function as an unconstrained
symbolic variable, leading to inaccuracy in subsequent anal-
ysis. In contrast, HermeScan summarizes the function and
determines that the value returned from this function has a
32-byte length constraint.

Efficiency: In terms of execution time, HermeScan has a
great advantage in the efficiency of analysis. Table III shows
that the average execution time of HermeScan on each sample
is one hour and seven minutes, which is 7.5x times faster
than SaTC and 3.8x times faster than KARONTE. The time
cost of taint analysis is positively related to the number of
paths to be detected, in other words, it is also related to
the number of source points and sink points. Compared with
KARONTE, SaTC locates more source points through the
keywords shared by the front and back ends, which generates

10

TABLE VI: N-day dataset evaluation results of HermeScan, SaTC, and KARONTE. For each vendor, we report the device series,
the number of firmware samples, the total number of alerts (ALERT), the total number of true positives (TP), the average true
positive rate (TPR), and the total analysis time (TIME: hour).

Vendor Device Series Samples HermeScan SaTC KARONTE
ALERT TP TPR TIME ALERT TP TPR TIME ALERT TP TPR TIME

NETGEAR R/XR/WNR/AC 31 668 505 0.76 56.6 582 299 0.51 540.8 35 26 0.74 137.3
D-Link DIR/DWR/DCS/COVR 17 36 29 0.81 12.8 20 14 0.70 20.9 16 13 0.81 39.1
TP-Link TD/WA/WR/TX/KC 18 6 2 0.33 5.9 8 3 0.38 79.1 5 2 0.40 16.8
Tenda AC/WH/FH/AX 20 289 251 0.87 34.2 262 229 0.87 227.9 23 15 0.65 7.9

TOTOLINK T/A/LR 6 64 52 0.81 1.6 6 4 0.67 33 0 0 / 1.3
MOTOROLA C1/M2 2 8 8 1 0.4 0 0 / 0.33 0 0 / 1.1

AXIS P/Q 2 0 0 / 0.5 0 0 0 4.1 0 0 / 0
Others / 2 0 0 / 0 0 0 / 0 4 4 1.00 1.6
Total / 98 1071 847 / 112.0 878 549 / 906.1 83 60 / 205.1

Average / / 10.93 8.64 0.79 1.14 8.96 5.60 0.63 9.25 0.85 0.61 0.72 2.09

3 13429

SaTC

HermeScan

(A) Comparison of different tools
on 0-day vulnerabilities

4

14

0

78

2 124
32

KARONTE

SaTC

HermeScan

(B) Comparison of different tools
on N-day vulnerabilities

Fig. 5: Number of vulnerabilities found by HermeScan and
baselines on the 0-day, N-day vulnerability dataset.

more paths that require taint tracking. However, the overheads
of using symbolic execution for taint tracking on each path
for input variables are enormous, which also results in high
execution time for SaTC and KARONTE. By contrast, on
the premise of ensuring sufficient source points to explore,
HermeScan uses lightweight, on-demand data flow analysis to
achieve taint tracking.

2) N-day Dataset: Effectiveness: We measure the effi-
ciency of the three tools by counting the number of known
vulnerabilities discovered on the N-day dataset. Figure 5-B
shows that HermeScan found 204 known vulnerabilities, 66
(=204-138) more than SaTC and 164 (=204-40) more than
KARONTE. The overall results prove that HermeScan also
has advantages in finding N-day vulnerabilities.

We also compare and analyze the unique N-day vulnera-
bilities found by the three tools. The finding of an additional
78 vulnerabilities by HermeScan benefits from two aspects:
one is that the more comprehensive CFG covers more source
and sink points; the other is that the automatic input point
recognition helps it identify more source points. The additional
14 vulnerabilities discovered by SaTC benefit from the precise
symbolic execution solution that can construct inputs that meet
certain constraints to trigger these vulnerabilities. The four
additional vulnerabilities found by KARONTE come from a
Huawei motherboard device, and neither SaTC nor HermeScan
can find a valid source point because there are no front-end
files in the firmware.

Accuracy: We counted the TP of the three tools on the
N-day dataset and calculated the TPR. As shown in Table VI,
The TPR of HermeScan is 79%, which is the highest among
the three tools, compared with 16% higher than SaTC and 7%

higher than KARONTE. Although the results of HermeScan
and KARONTE are similar in terms of average TPR, the
average TP found by HermeScan is much higher than that of
KARONTE. On the other hand, HermeScan is not only better
than SaTC in TPR but also has more true alerts than SaTC.
The results of large-scale data sets prove that HermeScan
can effectively reduce false positives by accurately identifying
input points and assigning reasonable taint values.

Efficiency: On a large-scale sample dataset, HermeScan
takes an average of 1.14 hours to analyze a firmware sample,
which is about half of the time required by KARONTE and
one-eighth of the time required by SaTC. The results once
again confirm our intuition that RDA-based taint tracking is
more efficient than symbolic execution-based taint tracking.

Conclusion: HermeScan can detect taint-style vulnerabili-
ties in firmware and outperform existing methods in effective-
ness, accuracy, and efficiency. HermeScan takes an average of
one hour and seven minutes to process each sample and find 87
zero-day vulnerabilities with 81% true positives on the 0-day
dataset.

C. Effectiveness of taint tracking on enhanced CFG (RQ2)

We evaluated HermeScan on six samples containing more
than four unknown vulnerabilities with different configurations
to figure out the contribution of each control flow optimization.
The number of vulnerabilities is the metric to measure the
contribution. The five configuration cases are annotated as
follows:

• HermeScan-Plain. This configuration only uses HermeS-
can’s dataflow analysis and taint engine on CFG constructed
by angr.

• HermeScan-En-B. This configuration enables the opti-
mization of function boundary identification.

• HermeScan-En-B&S. Not only does this enable recog-
nition of function boundaries, but this configuration also
recovers the symbol names of the functions.

• HermeScan-En-B&S&C. In addition to considering the
CFG of the shared link library, the other enhancement
optimizations are enabled.

• HermeScan. In this mode, all control flow optimizations
are enabled, which is also the configuration used by Her-
meScan in Section VI-B.

Figure 6 shows that HermeScan performs best when
enabling all control flow enhancement measures. The op-
timization of HermeScan-En-B, HermeScan-En-B&S, and

11

HermeScan-En-B&S&C has its contribution to the detection
of vulnerabilities.

We further analyze in detail how these optimizations help
HermeScan. The reason why HermeScan-En-B can find more
vulnerabilities is that it identifies more function boundaries
in the program, and these functions may contain potential
source and sink points. The recovery of symbolic names also
effectively expands the analysis scope of HermeScan. Because
the taint engine of HermeScan uses function names to locate
addresses of the sink points. In D-Link COVR 1203, the re-
covery of function names helps HermeScan-En-B&S to find all
vulnerabilities. The recovery of the calling convention assists
the LOC inter-procedural analysis. In Tenda W15 and Trend-
Net TEW-823, with the help of recovering calling conventions
by HermeScan-En-B&S&C, the dataflow of the tainted input
could be correctly passed to the callee function including sink
points. Considering the control flow connectivity between the
main program and the library inherently expands the target
range of static analysis. In the cases of ASUS RT-AX56u and
TOTOLINK T8, a total of 4 vulnerabilities are found in their
private libraries.

Conclusion: The optimization methods used to enhance
control flow all extend the scope of static analysis from
different aspects and improve the vulnerability detection ability
of HermeScan.

D. Effectiveness of Input Source Identification (RQ3)

In this section, we take HermeScan as the baseline and
compare the true positives and true positive rate of HermeScan
(Dis-FM) with fuzzy matching strategy disabled and HermeS-
can (Dis-IC) with input function checking strategy disabled.

As shown in Table V, HermeScan can not only guarantee
the highest TPR (81%), but also generate the most TPs (241)
after enabling the two strategies. The reasons are analyzed as
follows:

When the fuzzy matching strategy is turned off, HermeScan
(Dis-FM) misses about 63 TPs, and its TPR is close to that
of the original HermeScan. Enabling fuzzy matching does
introduce some false positives, but the benefit is minimal com-
pared to the additional true positives. The results in Table VII
show that our fuzzy matching strategy can find an additional
27% of keywords. While HermeScan (Dis-FM) only uses the

ASUS RT-AX56U
Tenda AX12

Tenda W15

TOTOLINK T8

D-Link COVR1203

TrendNet TEW823
0

2

4

6

8

10

12

14

16

18

20

N
um

be
r

of
 V

ul
ne

ra
bi

lit
ie

s

Plain
En-B
EN-B&S
EN-B&S&C
All

Fig. 6: Contribution of various control flow recovery optimiza-
tion methods to vulnerability detection.

TABLE VII: The number of shared keywords, filter functions,
and constrained functions identified by source input identi-
fication. The (S) and (H) annotations represent the SaTC’s
matching and HermeScan’s matching.

Vendor & Model Shared Keywords(S) Shared Keywords(H) Increased Proportion Constrained
Source Functions

LINKSYS MR7350 47 52 10.64% 1
LINKSYS E9450 56 57 1.79% 1

LINKSYS EA4500 65 66 1.54% 1
ASUS GT-AX6000 180 187 3.89% 2
ASUS GT-AC2900 180 184 2.22% 2
ASUS RT-AX56U 404 504 24.75% 2

Tenda AX-12 201 222 10.45% 1
Tenda AX-3 246 253 2.85% 1

Tenda AX-1803 254 255 0.39% 1
Tenda AX-1806 262 269 2.67% 1

Tenda W15E 437 535 22.43% 1
TOTOLINK T8 67 69 2.99% 1

TOTOLINK LR350 66 67 1.52% 1
TOTOLINK A7000 79 80 1.27% 1
TOTOLINK A8000 107 116 8.41% 1

D-LINK COVR-1201 506 625 23.52% 3
D-LINK COVR-1210 495 618 24.85% 3

Netgear RAX-10 860 897 4.30% 1
Netgear RAX-30 107 237 121.50% 1

Netgear RAX-120 866 1005 16.05% 1
Netgear MR-62 862 870 0.93% 0

Trendnet TEW-829 35 35 0.00% 0
Trendnet TEW-823 1042 1459 40.02% 1
Trendnet TEW-827 103 365 254.37% 1
Trendnet TEW-818 176 249 41.48% 1
Trendnet TEW-752 36 36 0.00% 0
TP-LINK AX3000 237 238 0.42% 0

TP-LINK XDR1850 99 188 89.90% 1
TP-LINK XDR3060 96 117 21.88% 1
TP-LINK XTR7880 108 213 97.22% 1

Average 276 336 27.81% 1

exact matching keyword reference address as the source point,
resulting in some false positives.

When the source function checking is turned off, HermeS-
can (Dis-IC) mistakenly regards all functions referenced by
shared strings as source functions. As shown in Table VII, 26
of the 30 samples involved at least one function with input
constraints. HermeScan (Dis-IC) over-taints the parameters
of these functions without restriction, resulting in an 18%
increase in false positives. For example, in the case of Tenda
W15, HermeScan (Dis-IC) mistakenly sourced the function
cJSON_AddItemToObject and tainted its parameters. In fact,
the behavior of this function is to add an item to the JSON
structure, rather than a reasonable source input.

Conclusion: The fuzzy matching strategy and candidate
source function checking can effectively help HermeScan
reduce false negatives and false negatives, making its analysis
more accurate. Input source identification helps to reduce the
false positives by 18% on the zero-day dataset.

E. Effectiveness of Path Merging Strategy (RQ4)

As introduced in Section IV-D2, HermeScan uses a path
merging strategy to alleviate the path explosion problem. In
this section, we verify the effectiveness of path merging by
comparing the number of analyzed paths before and after
adopting the strategy.

Table VIII shows the proportion of the reduction in the
number of paths resulting from the merger strategy. Overall,
the path merging strategy reduced paths by an average of
89.4%. Among them, 22 out of 30 samples merged more than
90% of the paths. In the TrendNet TEW-823, HermeScan re-
duced up to about 160,000 duplicate paths, greatly decreasing
the time of data flow analyses. After investigating its boundary
program ssi, we found that there are 2346 call sites of the
sensitive source functions and 6147 call sites of sensitive sink
functions, and 167,554 paths between them are reachable by
control flow. The path merging strategy of HermeScan regards
multiple source points in the same caller function as the same
starting position and includes all sink points on the reachable

12

TABLE VIII: Number of paths for taint tracking. The (bf) and
(af) annotations represent the before and after path merging
strategy.

Vendor & Model Paths(BF) Paths(AF) Decreased Proportion
LINKSYS MR7350 69 23 66.67%
LINKSYS E9450 472 121 74.36%

LINKSYS EA4500 1838 143 92.22%
ASUS GT-AX6000 1010 63 93.76%
ASUS GT-AC2900 1062 88 91.71%
ASUS RT-AX56U 636 129 79.72%

Tenda AX-12 1673 72 95.70%
Tenda AX-3 9413 96 98.98%

Tenda AX-1803 5112 109 97.87%
Tenda AX-1806 4789 101 97.89%

Tenda W15E 11113 186 98.33%
TOTOLINK T8 7126 101 98.58%

TOTOLINK LR350 12688 75 99.41%
TOTOLINK A7000 13944 77 99.45%
TOTOLINK A8000 610 105 82.79%

D-LINK COVR-1203 686 19 97.23%
D-LINK COVR-1210 644 18 97.20%

Netgear RAX-10 1299 57 95.61%
Netgear RAX-30 171 11 93.57%

Netgear RAX-120 910 345 62.09%
Netgear MR-62 2008 214 89.34%

Trendnet TEW-829 231 32 86.15%
Trendnet TEW-823 167554 265 99.84%
Trendnet TEW-827 12160 116 99.05%
Trendnet TEW-818 20014 219 98.91%
Trendnet TEW-752 594 9 98.48%
TP-LINK AX3000 0 0 0.00%

TP-LINK XDR1850 2294 17 99.26%
TP-LINK XDR3060 2747 18 99.34%
TP-LINK XTR7880 2689 18 99.33%

Average 9518 95 89.40%

TABLE IX: The results on function information recovery and
static analysis statistics. The (bf) and (af) annotations represent
before and after optimization. The Function Call Depth is the
maximum value of statistics.

Vendor & Model Function(bf) Function(af) Symbol(bf) Symbol(af) Library Function
Call Depth

Function
Coverage

LINKSYS MR7350 3001 3363(+362) 365 365 7 3 7.23%
LINKSYS E9450 1340 1463(+123) 468 471(+3) 39 7 9.77%

LINKSYS EA4500 3444 3617(+173) 0 144(+144) 3 4 8.49%
ASUS GT-AX6000 611 929(+318) 399 399 17 6 21.85%
ASUS GT-AC2900 878 934(+56) 235 235 17 7 26.02%
ASUS RT-AX56U 1218 1452(+234) 385 387(+2) 23 6 14.74%

Tenda AX-12 1363 1462(+99) 220 280(+60) 11 3 20.79%
Tenda AX-3 1507 1508(+1) 227 228(+1) 10 3 26.99%

Tenda AX-1803 6661 7527(+866) 294 294 35 4 4.26%
Tenda AX-1806 5053 6505(+1452) 290 290 34 4 4.52%

Tenda W15E 1621 1892(+271) 271 271 11 4 33.83%
TOTOLINK T8 370 528(+158) 106 123(+17) 9 3 14.58%

TOTOLINK LR350 313 434(+121) 0 281(+281) 9 2 27.88%
TOTOLINK A7000 309 428(+118) 0 128 7 3 28.50%
TOTOLINK A8000 398 585(+187) 155 155 6 3 27.01%

D-LINK COVR-1201 1203 1367(+164) 1 202(+201) 11 6 30.72%
D-LINK COVR-1210 1116 1278(+162) 1 162(+161) 11 6 31.06%

Netgear RAX-10 2052 2186(+134) 207 208(+1) 16 5 37.74%
Netgear RAX-30 1501 1711(+210) 213 213 41 6 4.73%

Netgear RAX-120 2032 2120(+88) 218 219(+1) 14 5 32.55%
Netgear MR-62 2728 2947(+219) 565 567(+2) 56 3 29.32%

Trendnet TEW-829 11750 12671(+921) 52 296(244) 5 3 0.92%
Trendnet TEW-823 908 1095(187) 0 126(+126) 11 2 32.05%
Trendnet TEW-827 1391 1399(+8) 223 251 13 2 24.59%
Trendnet TEW-818 492 536(+44) 170 170 7 3 27.61%
Trendnet TEW-752 297 317(+20) 0 109(+109) 3 3 17.67%
TP-LINK AX3000 1121 1121 547 559(+12) 7 0 0.00%

TP-LINK XDR1850 5783 5783 240 242(+2) 9 4 23.79%
TP-LINK XDR3060 6704 6762(+58) 292 292 8 4 29.15%
TP-LINK XTR7880 6919 6985(+66) 292 292 8 4 19.86%

path in CFG by one analysis. Eventually, the number of paths
used for dataflow analysis is reduced to only 265. In TP-LINK
AX3000, HermeScan did not discover one potential path even
before the paths merged. The reason is the call site to the
sensitive sink function is not detected in the boundary binary
fapi_wlan_cli.

Conclusion: The path merging strategy reduces the number
of paths by 89.4% on average. Avoiding the analysis of
repeated paths can reduce the analysis cost and alleviate the
problem of path explosion to a certain extent.

F. Performance of Control Flow Information Recovery and
Static Analysis (RQ5)

1) Results of Control Flow Information Recovery: To
demonstrate the performance of HermeScan in control flow
information recovery, we compare the number of function
identifications and the number of symbol names before and

after taking optimization measures. Besides, we count the
number of libraries that boundary binaries depend on in our
dataset.

As shown in Table IX, after control flow recovery opti-
mization, the number of functions identified is improved on 28
samples, and the number of symbol name recovery is increased
on 19 samples. In particular, in the cases of TEW-752, TEW-
823, COVR-1210, COVR-1203, LR350, A7000, and EA4500,
angr recognizes few symbol names of the external library func-
tions, while HermeScan successfully recovers symbol names
of functions from the LOAD segment by parsing the ELF in
the way of link view. Meanwhile, we found that the number
of libraries that each boundary binary depends on varies from
3 to 56, many of which are privately implemented.

2) Results of Static Analysis: We use the maximum depth
of the function call and function coverage to measure the
performance of HermeScan in Table IX. In terms of the
function call depth, the analysis of HermeScan involves more
than 2 layers of function calls on samples except for TP-LINK
AX-3000, which not only reflects that multi-layer function
calls are common in the dataset, but also proves that our inter-
procedural analysis is feasible. In terms of function coverage,
on average 26% of functions are covered by HermeScan,
indicating that our analysis applies to real firmware programs.

Conclusion: The results prove that the control flow infor-
mation recovery of HermeScan is effective and HermeScan is
suitable for real-world firmware binaries.

VII. Discussion

We highlight the boundaries and limitations of HermeS-
can’s capabilities and propose possible improvements.

The false positive of the HermeScan: Despite imposing
constraints on taint sources and providing sanitizers based on
functions, HermeScan still faces false positives. The reasons
come from three aspects: the first is the constraints on the
path between the real entry point of external input data (such
as the recv function) and the source function in the program.
For instance, user-driven sanitizer filtering of some syntax
in the program leads to stronger constraints at the source
point. Second, the approach we infer taint source constraints
is limited by the capabilities of VSA, and overestimation
constraints cause certain false positives. Third, our sanitizer
could not handle explicit checks in the path condition and
may introduce false positives. To address these issues, we
recommend combining partial simulation execution [24], [33]
to dynamically observe the data flow that involves complex
constraints, which can compensate for the shortcomings of
pure static methods.

The false negative of the HermeScan: In HermeScan, the
sinks are derived from function calls, and the pointer aliasing
is demand-driven, which brings some false negatives to the
analysis. For the former, our LCO-RDA is a general approach
to identify how inputs flow to dangerous addresses. It can
be extended to detect more sink points (such as array out of
bounds) in the future. For the latter, it is well known that
alias analysis in binary is an open and challenging problem.
We suggest more precise pointer analysis could benefit from
Emtaint’s [6] SSE-based alias analysis and AI-assisted indirect
call identification [44].

13

Targets of taint tracking: Currently HermeScan can track
the data flow in binary files but fails to process the data flow
transfer between programs written in different languages. In
some devices, data from the user is processed across language
files, such as binary files changing some configuration files that
are then parsed by JS scripts on the Web front-end. It is an
open problem to lift the files that are written in multi-language
to a unified IR and analyze them, which can further expand
the scope of HermeScan’s application.

VIII. Related work

A. Static Taint Analysis

In recent years, the targets of static taint analysis work can
be divided into two categories: one is interpreted language
files or script files with source code, and the other is binary
files without source code. The novelty of HermeScan compared
with existing work is summarized in Table X and details are
explained as follows:

Taint source identification: Most works on taint source
identification rely on expert knowledge, either obtained by
parsing the documentation of the target [19], [1], [26] or
directly manually specified [43], [6], [5], [31], [17]. To our
knowledge, HermeScan is the first work that combines AI
technology [8] with fuzzy matching keywords to automatically
identify taint sources.

Taint tag management: In taint analysis of interpreted
language files, the less attention is paid to the value constraints
on the taint tags. Only ARGUS [19] implements a taint
summary database to assign values to each unique Action or
reusable Workflow. In SOTA of firmware analysis [3], [26],
the purpose of taint analysis is to guide symbolic execution,
so they also use a simple tag to label the taint data. In
contrast, HermeScan adds constraint checks to taint tags to
reduce false positives, especially for detecting buffer overflow
vulnerabilities.

Taint propagation: Works such as FlowDroid [1], AR-
GUS [19], Tchecker [17], etc. can perform flow-sensitive
or even field-sensitive data flow analysis when the source
code is available. However, the cost of doing flow-sensitive
analysis in binary is the introduction of symbolic execution.
For example, Emtaint [6] uses a structured symbolic expression
for alias analysis, but complex variable propagation leads to
difficulties in symbol storage. Similarly, the path exploration
capabilities of SaTC [3] and KARONTE [26] are limited by
symbolic execution, resulting in false negatives. HermeScan’s
philosophy is to be context-sensitive and track data flows on
demand, which is proven more effective in the evaluation.

Path merging: Path merging or other methods that replace
complete path analysis are important methods of taint analysis.
Splendor [31] extracts the overlapping paths of statements an-
alyzed forward from the source points and statements analyzed
backward from the sink points. HermeScan designs a path
merging strategy based on multi-source and multi-sink, which
is more efficient than SaTC.

B. Binary Static Analysis

Many works [7], [36], [25] use symbolic execution to detect
vulnerabilities in specific architectures. The scope of these

TABLE X: Comparison of static taint analysis works in the
four dimensions of taint source identification, taint assignment,
taint propagation, and path merging.

Target Taint Source
Identification

Tains Sink
Identification

Taint Tag
Management

Taint Propogation
Strategy

Pathes
Merging

Zexin Z Microservices Manually specified based on
sensitive API Tag Filed-sensitive,

on-demand /

ARGUS Github workflow Modeling based
on parsing Github document

based on
sensitive statment

Tag
with Summary

Flow-sensitive,
on-demand /

Splendor Webs Applications Manually specified based on
sensitive function Tag Flow-sensitive,

on-demand
Based on

pathes matching

FlowDroid APP Modeling based
on parsing APK config files

based on
sensitive API Tag Flow,context,

field-sensitive,on-demand /

TChecker Webs Applications Manually specified based on
sensitive function Tag Flow,context-sensitive,

on-demand /

DTaint Binary Manually specified based on
sensitive function Tag Context-insensitive /

KARONTE Binary Modeling based
on finding IPC

based on
sensitive function Tag Flow-sensitive(SE),

on-demand /

SATC Binary Modeling based
on precise matching

based on
sensitive function Tag Flow-sensitive(SE),

on-demand
Based on

multi sinks

Emtaint Binary Manually specified based on
sensitive function Tag Flow-sensitive(SSE),

on-demand /

HermeScan Binary Modeling based
on fuzzy matching

based on
sensitive function

Tag
with constraint

Context-sensitive(RDA),
on-demand

Based on
multi sources&sinks

workings is often focused on a certain class of vulnerabilities,
and the efficiency is limited by symbolic execution.

In recent years, some static analysis methods combined
with dynamic characteristics have made some progress.
Saluki [11] collects the execution data flow of a specific source
by simulating the execution code fragment, and judges whether
it violates the security property according to the solver de-
signed by itself. Arbiter [34] has designed a hybrid method that
combines static analysis and dynamic symbol execution with
both accuracy and efficiency and has excellent performance on
a large-scale evaluation of x86-64 programs. Although these
methods require a certain amount of manual effort to write
detection rules and specify input sources, they inspire us that
static analysis can play a more efficient role than symbolic
execution in the stage of collecting data dependencies.

C. Static Analysis in Firmware

Since IoT firmware is often closed source, the white-
box auditing [28] and grey-box fuzzing like coverage-guided
fuzzing [16] can not be directly applied to the firmware. In con-
trast, static analysis has fewer application preconditions that
do not depend on a complicated execution environment. Thus,
several works utilize static analysis to detect vulnerabilities in
firmware [5], [26], [3], [4], [29].

For detecting taint-style vulnerabilities, Dtaint [5] is the
first work to utilize the dataflow analysis to track the flow
of insecure input in firmware. However, the CFG built by
Dtaint is not complete, and the pointer alias analysis method
it proposes to resolve indirect calls is limited. Emtaint [6] is
a recent work to resolve the indirect call by SSE-based alias
analysis. However, its alias analysis is limited by the ability of
symbol storage, resulting in false negatives in taint analysis
starting from the network receiving function. KaiCheng et
al. [4] propose a static taint analysis framework, which infers
taint sources by identifying functions with key-value features.
The model of using the key-value function cannot cover many
source points and is likely to miss potential vulnerabilities.
KARONTE [26] models the interactions between multiple
binaries and tracks the data flow between them, aiming to
find vulnerabilities that exist in insecure interactions. SaTC [3]
finds that developers usually use shared keywords between
front-end files and back-end binaries, which can be used to
locate the source points by these keywords. Both SaTC and
KARONTE’s taint tracking is based on symbolic execution,
suffering from high overhead and lack of accuracy.

14

In addition, some works are using static analysis methods
to detect other weaknesses of the firmware. Firmalice [29] is
a framework aimed at finding authentication bypass flaws in
firmware based on symbolic execution and program slicing.
However, the authentication bypass model is limited and the
computing overloads are overwhelming. CryptoREX [41] is
designed to identify cryptography misuse in IoT using taint
analysis. Though CryptoREX performs taint analysis across
multiple binaries, its analysis is still insufficient due to ignoring
vendor-specific libraries.

IX. Conclusion

In this paper, we present a lightweight reaching definition
analysis (RDA) solution HermeScan to perform taint analysis
on IoT firmware binaries, which is able to find taint-style
vulnerabilities in IoT firmware with fewer false negatives,
false positives, and time costs. Specifically, we point out that
existing solutions have three drawbacks or challenges, which
limit their performance. First of all, existing solutions over-
looked the incomplete control flow graph issue, which brings
non-negligible false negatives. Second, existing solutions did
shorten the paths to analyze to get fewer false positives, but
have limited precision. Third, existing solutions have a perfor-
mance issue due to heavyweight symbolic execution and the
path explosion issue. HermeScan addresses these challenges
by adopting a lightweight, on-demand, context-sensitive RDA-
based taint analysis, with the help of enhanced CFG recovery
and more precise taint source identification. Our prototype
system has successfully discovered 87 zero-day bugs in 30
firmware samples. Compared to SOTA tools, HermeScan could
find more bugs in less time with much fewer false positives.

Acknowledgments

The authors would like to thank the anonymous reviewers
for their insightful suggestions on our paper. This work is
supported in part by the National Key Research and Devel-
opment Program of China (2021YFB2701000), the Key R&D
Special Program of Henan Province (No.221111210300), and
the National Natural Science Foundation of China (grant #
61972224, #62272265).

References

[1] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” Acm Sigplan Notices, vol. 49, no. 6, pp. 259–269, 2014.

[2] H. Casanova, “Linking and loading,” 2010.
[3] L. Chen, Y. Wang, Q. Cai, Y. Zhan, H. Hu, J. Linghu, Q. Hou, C. Zhang,

H. Duan, and Z. Xue, “Sharing more and checking less: Leveraging
common input keywords to detect bugs in embedded systems,” in 30th
USENIX Security Symposium, 2021, pp. 303–319.

[4] K. Cheng, D. Fang, C. Qin, H. Wang, Y. Zheng, N. Yu, and L. Sun,
“Automatic inference of taint sources to discover vulnerabilities in soho
router firmware,” in IFIP International Conference on ICT Systems
Security and Privacy Protection. Springer, 2021, pp. 83–99.

[5] K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun, and Z. Liang,
“Dtaint: detecting the taint-style vulnerability in embedded device
firmware,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks. IEEE, 2018, pp. 430–441.

[6] K. Cheng, Y. Zheng, T. Liu, L. Guan, P. Liu, H. Li, H. Zhu, K. Ye, and
L. Sun, “Detecting vulnerabilities in linux-based embedded firmware
with sse-based on-demand alias analysis,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2023, pp. 360–372.

[7] M. Cova, V. Felmetsger, G. Banks, and G. Vigna, “Static detection
of vulnerabilities in x86 executables,” in 2006 22nd Annual Computer
Security Applications Conference. IEEE, 2006, pp. 269–278.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[9] C. Eagle, The IDA pro book. no starch press, 2011.
[10] X. Feng, R. Sun, X. Zhu, M. Xue, S. Wen, D. Liu, S. Nepal, and Y. Xi-

ang, “Snipuzz: Black-box fuzzing of iot firmware via message snippet
inference,” in Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, 2021, pp. 337–350.

[11] I. Gotovchits, R. Van Tonder, and D. Brumley, “Saluki: finding taint-
style vulnerabilities with static property checking,” in Proceedings of
the NDSS Workshop on Binary Analysis Research, vol. 2018, 2018.

[12] J. Grossklags and C. Eckert, “τcfi: Type-assisted control flow integrity
for x86-64 binaries,” in Research in Attacks, Intrusions, and Defenses:
21st International Symposium, RAID 2018, Heraklion, Crete, Greece,
September 10-12, 2018, Proceedings, vol. 11050. Springer, 2018, p.
423.

[13] M. Hasan, “State of iot 2022: Number of connected iot de-
vices growing 18% to 14.4 billion globally,” https://iot-analytics.com/
number-connected-iot-devices, 2022.

[14] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “Firmae:
Towards large-scale emulation of iot firmware for dynamic analysis,”
in Annual Computer Security Applications Conference, 2020, pp. 733–
745.

[15] S. H. Kim, C. Sun, D. Zeng, and G. Tan, “Refining indirect call targets
at the binary level.” in NDSS, 2021.

[16] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
no. 1, pp. 1–13, 2018.

[17] C. Luo, P. Li, and W. Meng, “Tchecker: Precise static inter-procedural
analysis for detecting taint-style vulnerabilities in php applications,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 2175–2188.

[18] A. Møller and M. I. Schwartzbach, “Static program analysis,” Notes.
Feb, 2012.

[19] S. Muralee, I. Koishybayev, A. Nahapetyan, G. Tystahl, B. Reaves,
A. Bianchi, W. Enck, A. Kapravelos, and A. Machiry, “{ARGUS}: A
framework for staged static taint analysis of {GitHub} workflows and
actions,” in 32nd USENIX Security Symposium, 2023, pp. 6983–7000.

[20] E. N, “Sam iot security report,” https://securingsam.com/wp-content/
uploads/2022/04/SAM_IOT-Security-Report.pdf, 2022.

[21] G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys, vol. 33, no. 1, pp. 31–88, 2001.

[22] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software.” in NDSS, vol. 5. Citeseer, 2005, pp. 3–4.

[23] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program
analysis. Springer Science & Business Media, 2004.

[24] N. A. Quynh and D. H. Vu, “Unicorn: Next generation cpu emulator
framework,” BlackHat USA, vol. 476, 2015.

[25] N. Redini, A. Machiry, D. Das, Y. Fratantonio, A. Bianchi, E. Gustafson,
Y. Shoshitaishvili, C. Kruegel, and G. Vigna, “Bootstomp: On the secu-
rity of bootloaders in mobile devices.” in USENIX Security Symposium,
2017, pp. 781–798.

[26] N. Redini, A. Machiry, R. Wang, C. Spensky, A. Continella, Y. Shoshi-
taishvili, C. Kruegel, and G. Vigna, “Karonte: Detecting insecure multi-
binary interactions in embedded firmware,” in 2020 IEEE Symposium
on Security and Privacy. IEEE, 2020, pp. 1544–1561.

[27] D. Selivanov and contributors, “text2vev,” https://text2vec.org/, 2022.
[28] Semmle, “Codeql for research,” https://securitylab.github.com/tools/

codeql, 2022.
[29] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna,

15

https://iot-analytics.com/number-connected-iot-devices
https://iot-analytics.com/number-connected-iot-devices
https://securingsam.com/wp-content/uploads/2022/04/SAM_IOT-Security-Report.pdf
https://securingsam.com/wp-content/uploads/2022/04/SAM_IOT-Security-Report.pdf
https://text2vec.org/
https://securitylab.github.com/tools/codeql
https://securitylab.github.com/tools/codeql

“Firmalice-automatic detection of authentication bypass vulnerabilities
in binary firmware.” in NDSS, vol. 1, 2015, pp. 1–1.

[30] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in 2016
IEEE Symposium on Security and Privacy. IEEE, 2016, pp. 138–157.

[31] H. Su, F. Li, L. Xu, W. Hu, Y. Sun, Q. Sun, H. Chao, and W. Huo,
“Splendor: Static detection of stored xss in modern web applications,”
in Proceedings of the 32nd ACM SIGSOFT International Symposium
on Software Testing and Analysis, 2023, pp. 1043–1054.

[32] C. J. Tan, J. Mohamad-Saleh, K. A. M. Zain, and Z. A. A. Aziz,
“Review on firmware,” in Proceedings of the International Conference
on Imaging, Signal Processing and Communication, 2017, pp. 186–190.

[33] H. J. Tay, K. Zeng, J. M. Vadayath, A. S. Raj, A. Dutcher, T. Reddy,
W. Gibbs, Z. L. Basque, F. Dong, Z. Smith et al., “Greenhouse:
Single-service rehosting of linux-based firmware binaries in user-space
emulation,” in 32nd USENIX Security Symposium, 2023, pp. 5791–
5808.

[34] J. Vadayath, M. Eckert, K. Zeng, N. Weideman, G. P. Menon, Y. Fratan-
tonio, D. Balzarotti, A. Doupé, T. Bao, R. Wang et al., “Arbiter:
Bridging the static and dynamic divide in vulnerability discovery on
binary programs,” in 31st USENIX Security Symposium, 2022, pp. 413–
430.

[35] L. Wang, F. Li, L. Li, and X. Feng, “Principle and practice of taint
analysis,” Journal of Software, vol. 28, no. 4, pp. 860–882, 2017.

[36] T. Wang, T. Wei, Z. Lin, and W. Zou, “Intscope: Automatically detecting
integer overflow vulnerability in x86 binary using symbolic execution.”
in NDSS, 2009.

[37] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s trans-
formers: State-of-the-art natural language processing,” arXiv preprint
arXiv:1910.03771, 2019.

[38] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A.
Clements, “Challenges in firmware re-hosting, emulation, and analysis,”
ACM Computing Surveys, vol. 54, no. 1, pp. 1–36, 2021.

[39] W. Xie, J. Chen, Z. Wang, C. Feng, E. Wang, Y. Gao, B. Wang,
and K. Lu, “Game of hide-and-seek: Exposing hidden interfaces in
embedded web applications of iot devices,” in Proceedings of the ACM
Web Conference 2022, 2022, pp. 524–532.

[40] B. Yu, P. Wang, T. Yue, and Y. Tang, “Poster: Fuzzing iot firmware
via multi-stage message generation,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019,
pp. 2525–2527.

[41] L. Zhang, J. Chen, W. Diao, S. Guo, J. Weng, and K. Zhang, “Cryp-
torex: Large-scale analysis of cryptographic misuse in iot devices,” in
22nd International Symposium on Research in Attacks, Intrusions and
Defenses, 2019, pp. 151–164.

[42] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “Firm-
afl:high-throughput greybox fuzzing of iot firmware via augmented
process emulation,” in 28th USENIX Security Symposium, 2019, pp.
1099–1114.

[43] Z. Zhong, J. Liu, D. Wu, P. Di, Y. Sui, and A. X. Liu, “Field-based
static taint analysis for industrial microservices,” in Proceedings of
the 44th International Conference on Software Engineering: Software
Engineering in Practice, 2022, pp. 149–150.

[44] W. Zhu, Z. Feng, Z. Zhang, J. Chen, Z. Ou, M. Yang, and C. Zhang,
“Callee: Recovering call graphs for binaries with transfer and con-
trastive learning,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2023, pp. 2357–2374.

16

	Introduction
	Background
	Threat Model
	Taint analysis
	Reaching Definition Analysis
	Motivating Example

	Challenges
	Comprehensive CFG Recovery
	Precise Source Point Identification
	Efficient Taint Tracking

	Design
	Overview
	Enhanced CFG Recovery
	Source Input Identification
	Fuzzy Matching Strategy
	Candidate Function Checking

	Efficient RDA Analysis
	LCO Inter-procedural Analysis
	Path merging strategy

	Taint Inspection Engine

	Implementation
	Evaluation
	Experiment Setup
	Bug Finding (RQ1)
	Zero-day Dataset
	N-day Dataset

	Effectiveness of taint tracking on enhanced CFG (RQ2)
	Effectiveness of Input Source Identification (RQ3)
	Effectiveness of Path Merging Strategy (RQ4)
	Performance of Control Flow Information Recovery and Static Analysis (RQ5)
	Results of Control Flow Information Recovery
	Results of Static Analysis

	Discussion
	Related work
	Static Taint Analysis
	Binary Static Analysis
	Static Analysis in Firmware

	Conclusion
	References

