
Inbox Invasion: Exploiting MIME Ambiguities to Evade Email
Attachment Detectors

Jiahe Zhang
Tsinghua University

Beijing, China
zhjh23@mails.tsinghua.edu.cn

Jianjun Chen∗
Tsinghua University; Zhongguancun

Laboratory
Beijing, China

jianjun@tsinghua.edu.cn

Qi Wang
Tsinghua University

Beijing, China
qi-wang23@mails.tsinghua.edu.cn

Hangyu Zhang
Tsinghua University

Beijing, China
hangyu-z21@mails.tsinghua.edu.cn

Chuhan Wang
Tsinghua University

Beijing, China
wch22@mails.tsinghua.edu.cn

Jianwei Zhuge
Tsinghua University; Zhongguancun

Laboratory
Beijing, China

zhugejw@tsinghua.edu.cn

Haixin Duan
Tsinghua University; Zhongguancun

Laboratory
Beijing, China

duanhx@tsinghua.edu.cn

ABSTRACT
Email attachments have become a favored delivery vector for mal-
ware campaigns. In response, email attachment detectors are widely
deployed to safeguard email security. However, an emerging threat
arises when adversaries exploit parsing discrepancies between
email detectors and clients to evade detection. Currently, uncover-
ing these vulnerabilities still depends on manual, ad hoc methods.
In this paper, we perform the first systematic evaluation of email
attachment detection against parsing ambiguity vulnerabilities. We
propose a novel testing methodology, MIMEminer, to systematically
discover evasion vulnerabilities in email systems. We evaluated our
methodology against 16 content detectors of popular email services
like Gmail and iCloud, and 7 popular email clients like Outlook and
Thunderbird. In total, we discovered 19 new evasion methods affect-
ing all tested email services and clients. We further analyzed these
vulnerabilities and identified three primary categories of malware
evasions. We have responsibly reported those identified vulnerabil-
ities to the affected providers to help with the remediation of such
vulnerabilities and received acknowledgments from Google Gmail,
Apple iCloud, Coremail, Tencent, Amavis and Perl MIME-tools.

CCS CONCEPTS
• Security and privacy→ Network security; Intrusion/anomaly
detection and malware mitigation.

∗Corresponding author.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10.
https://doi.org/10.1145/3658644.3670386

KEYWORDS
Email Security; Parsing Ambiguity; Content Detection Bypass
ACM Reference Format:
Jiahe Zhang, Jianjun Chen, QiWang, Hangyu Zhang, ChuhanWang, Jianwei
Zhuge, and Haixin Duan. 2024. Inbox Invasion: Exploiting MIME Ambigui-
ties to Evade Email Attachment Detectors. In Proceedings of the 2024 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’24),
October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3658644.3670386

1 INTRODUCTION
Malicious email attachments have become a significant threat to
cybersecurity. Those attachments contain viruses, ransomware, or
phishing scripts, serving as the initial entry point for malware infec-
tions and phishing campaigns. For instance, Verizon report found
that 94% of all malware is delivered by email [33], highlighting
the severity of this threat vector. To combat this menace, email
security appliances like malware detectors have been widely de-
ployed [16]. Those detectors provide a crucial layer of protection to
email systems by scanning incoming emails and their attachments
for malicious content.

Previous studies have explored methods to evade malware de-
tectors by altering the malware code through techniques like ob-
fuscation, metamorphism, and binary packing [4, 28], as shown
in Figure 1a. Recent findings, however, have brought to light the
emergence of email parsing ambiguity vulnerabilities as a potential
avenue for evading malware detection [31]. These vulnerabilities
arise from discrepancies in how email messages are parsed by secu-
rity detectors compared to email clients. Attackers can exploit these
inconsistencies to manipulate protocol-level operations, such as
the structuring and parsing of email messages, as shown in Figure
1b. This manipulation allows attackers to conceal malware within
the protocol’s operations, effectively bypassing malware detection
systems. Despite their rising threat, these vulnerabilities are mostly

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3670386
https://doi.org/10.1145/3658644.3670386

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jiahe Zhang et al.

Pass

Detector: fails to scan
the packed virus

Email Client

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: subject
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Packed-Virus-Content

Attacker

 Scanning ...

(a) Malware-level Detection Bypass

Pass

Detector: multipart
body not found

Email Client

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: subject
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus-Content

Attacker

 Scanning ...

(b) Protocol-level Detection Bypass

Figure 1: Differences in the Principle of Malware-Level and Protocol-Level Detection Bypass

identified through manual, ad hoc methods, lacking a systematic
approach for detection.

In this paper, we aim to fill this gap by performing the first sys-
tematic evaluation of email attachment detection against parsing
ambiguity vulnerabilities. To achieve this goal, we need to address
three research questions: (1) How can we generate email samples
that systematically probe potential ambiguities, given the complex-
ity of email structures? (2) How can we effectively test cloud-based
email services without dispatching an excessive volume of emails?
(3) How do we detect potential attachment evasion vulnerabilities?

To tackle those questions, we propose a novel testing method-
ology to discover evasion vulnerabilities in email attachment de-
tection. For the first question, we design a syntax tree-based email
sample construction and mutation strategy, enabling the automatic
generation of samples with structure ambiguities. For the second
question, we collect a group of popular email parsing libraries as
testing oracles and use them to filter those email samples with
invalid structures before sending them to target email services. For
the third question, we develop a testing harness to detect potential
attachment evasion vulnerabilities. If an email sample can pass
email attachment detection, while the mail user agent (MUA) per-
mits users to download the original malware as an attachment, we
use this disparity to identify potential evasion vulnerabilities.

We developed an automated testing tool, MIMEminer, and eval-
uated it on 16 content detectors, i.e., 15 detectors of popular email
services and one open-source email gateway suite [3] for self-host
email servers, along with 7 popular email clients. In total, we have
discovered 24 evasion vulnerabilities affecting all tested email ser-
vices and clients, among which 19 are newly discovered and caused
80.9% of all the evasion vulnerabilities in our test. Due to the generic
nature of protocol-level evasion vulnerabilities, these vulnerabilities
can be used to transmit any malware to bypass target attachment
detectors. We further analyzed these vulnerabilities and identified
three primary causes leading to attachment evasions: (1) Confu-
sion over content encoding types; (2) Inconsistencies in decoding
algorithms; (3) Differences in parsing malformed MIME structure;
We responsibly disclosed our findings to the affected providers and
received acknowledgments from notable entities such as Google
Gmail, Apple iCloud, Coremail, Tencent, Amavis and Perl MIME-
tools.

Contributions. In summary, we make the following contribu-
tions:
• We introduced a novel testing toolMIMEminer1 to effectively
discover email malware evasion vulnerabilities that broadly
threaten email systems.
• We evaluated our tool on 16 well-known email content de-
tectors and 7 email clients. We found 19 new vulnerabilities
affecting popular email services like Google Gmail, Apple
iCloud, Tencent and Coremail.
• We performed the first systematic study of email malware
evasion vulnerabilities from the perspective of abnormal
email structures and summarized them into three categories.
We responsibly disclosed our findings to help with the reme-
diation of such vulnerabilities and received positive feedback.

2 BACKGROUND
2.1 Email MIME Protocol
At its inception, the email system only supported the transmis-
sion of plain ASCII text content. This means that all kinds of
non-English characters and binary data content (including images,
sounds, videos) can not be transmitted through email. In order
to meet the needs of a wider range of applications, researchers
extended the original email data format specification with MIME
(Multipurpose Internet Mail Extensions) [12–14, 23, 24]. It aims to
realize rich content transfer functions without changing the SMTP
protocol and RFC 822 [1], the initial mail content format standard.

Figure 2 shows a simple example of a MIME message. In the
header section of the message, there are six header fields: From,
To, Date, MIME-Version, Subject and Content-Type, where MIME-
Version and Content-Type are defined by the MIME standard. After
a separate blank line, there is the body of the message. The Content-
Type field defines this message as a multipart type and uses the
separator string "foo", which further divides the message body into
two separate messages. The first part of the message is of type text,
while the second part of the message is of type application, which
is a binary file.

In the header field of the second message part, the Content-Type
value is application/octet-stream, indicating that the content of the
1Our tool and test samples are publicly available at https://github.com/MIME-miner/
MIMEminer.

https://github.com/MIME-miner/MIMEminer
https://github.com/MIME-miner/MIMEminer

Inbox Invasion: Exploiting MIME Ambiguities to Evade Email Attachment Detectors CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

message body is a stream of binary data. The Content-Disposition
header specifies that the message should be attached as part of an
email message, and a parameter filename is used to specify the
filename of the attachment. The Content-Transfer-Encoding field
declares that the binary data in the message body has been base64
encoded.

From: <Amy@sender.com>
To: <Sam@receiver.com>
Date: Mon, 1 Jan 2024 10:10:10 +0000
MIME-Version: 1.0
Subject: normal attachment test case
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
This is the main body text part.
--foo
Content-Type: application/octet-stream; name=test.att
Content-Disposition: attachment; filename=test.att
Content-Transfer-Encoding: base64

WrIS53c9UC/DSCpYJPQ0P4WTMPrK+WAacWt5K1CCNo8=
--foo--

.

MIME
header for
the whole
message

MIME
body for

the whole
message

MIME header for
email main text

MIME body for
email main text

MIME header for
email attachment

MIME body for
email attachment

Separating / Terminating
symbols for multipart emails

(a) Structure of the MIME Message

Header name
Header value Parameter

name

Content-Type: application/octet-stream; name=test.att
Content-Disposition: attachment; filename=test.att
Content-Transfer-Encoding: base64

Parameter
value

(b) Structure of the MIME Headers

Figure 2: An example illustrating MIME Structure

Encoding Schemes. Initially, the email transfer environment lim-
ited the transmission content to 7-bit ASCII characters. Therefore,
MIME defined two encoding schemes to map arbitrary data con-
tent to the 7-bit ASCII character range, encoded data needs to be
declared with the Content-Transfer-Encoding header to specify
the encoding scheme. quoted-printable encoding is suitable for
cases where the proportion of non-ASCII characters is relatively
low and aims to preserve the readability of the original text data
as much as possible. Its basic idea is to leave readable ASCII char-
acters unchanged while encoding other octets in the form of "="
followed by hexadecimal digits (e.g., "=9A" for the octet 0x9A). On
the other hand, base64 is more suitable for general arbitrary binary
data. The encoding process represents 24-bit groups of input bits
as output strings of 4 encoded characters. These 24 bits are treated
as 4 concatenated 6-bit groups, each of which is translated into a
single digit in the base64 alphabet. Each 6-bit group is used as an
index into an array of 64 printable characters. When fewer than 24
input bits are available in an input group, zero bits are added and
padding at the end of the data is performed using the "=" character.

2.2 Email Delivery and Attachment Detection
Figure 3 shows an example of the email delivery and detection
process, as follows:

1) The sender prepares the email message through the Mail User
Agent (MUA) and delivers it to the sending server. The message
may contain different parts such as text body, image attachments,
binary attachments, etc.

2) The sending server performs a DNS query to obtain the MX
(Mail Exchange) records for the recipient domain and delivers the
email to the receiving server.

3) The receiving mail server conducts content detection on in-
coming emails and passes the email message to the content detector,
which parses the email message into various parts and invokes
specific content detection engines (e.g., anti-virus engines) for ma-
licious content scanning. If the detection engine does not identify
any security-sensitive content, the email is passed down to the
following components.

4) The recipient fetches the message from the receiving mail
server to their MUA via POP3/IMAP and then reads the email
contents, including the body and attachments.

Despite variations in the deployment of content detection gate-
ways, we emphasize the unified threat model for detection bypass
due to the independent parsing processes of detection components
and client components. Given the complexity of email syntax and
structure, there could possibly be a wide range of parsing inconsis-
tencies among different components, which can be exploited for
evasion attacks.

Email with
parsing ambiguity

Email server

Parsing
scheme A

Parsing scheme B

Email client User
Malicious content

Pass

Content
detector

Figure 3: Email Delivery and Attachment Detection

3 OVERVIEW
In this section, we will specify the fundamentals of content de-
tection bypass attacks based on email parsing ambiguities, includ-
ing threat model, attack goals, bypass principles, possible security
threats, and core research questions.

3.1 Threat Model
The attacks discussed in this paper are realized by remote operation.
The attacker does not have any administrative privileges over the
target mail system nor the content detection engine it employs and
does not need access to information about the target mail account
other than its delivery address. All the attacker should have is a
controllable host capable of sending emails to the server of the
target account.

The attacker’s goal can be summarized as follows: an email with
malicious content is delivered to a target email account without trig-
gering the detection engine to intercept it, and the account owner

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jiahe Zhang et al.

receives the malicious content without receiving any security warn-
ing, therefore accomplishing bypass of the detection engine. In this
work, we further specify the attack scenario as containing malicious
content in email attachments, and regard the victim downloading
the malicious attachments to the local device through a certain
client as the destination of the attack.

Based on the previously described attacker characteristics, they
can send email content with parsing ambiguity issues directly to
the victim. Depending on the deployment scheme of the email
system, the email may be delivered to the mail server of the cloud
gateway first, or directly to the incoming mail server and then
invoke the detection engine. From the email delivery process, we
can notice that the parsing of emails occurs at two points: (1) the
content scanning process of the detection engine (detector side)
and (2) the process of end-users reading the content of each part of
the email (client side). These two parsing processes are relatively
independent, leaving room for parsing discrepancies that may cause
security problems: i.e., the detection side fails to correctly parse the
malicious content and release it, but the client eventually extracts
the malicious content accurately, thus achieving detection bypass.

3.2 Motivating Example
In Figure 4 we present a real-world case we discovered. Both of the
demonstrated email messages contain the same virus payload in
a nested message part, but the boundary parameter for the inner
parts are different. The sample on the left is typically intercepted by
email content detectors since they are able to extract the malicious
content layer by layer. However, the sample on the right can pass the
detection of Microsoft Outlook because it continues searching for
the non-existent inner boundary parameter and extracts nothing,
while most email clients keep using the outer boundary and get the
virus attachment.

It is worth noting that the prominent feature of this attack lies
in its independence from specific malicious content and its notable
generality. The bypass does not involve obfuscation, encryption, or
transformation of the malicious content itself; instead, it focuses
on constructing malformed structures at the email level during
the encapsulation process. Therefore, such a pattern can theoreti-
cally achieve the concealment of characteristics for any malicious
content, regardless of its specific nature.

3.3 Research Questions
From the above description of the attack principles, the key point
of these attacks is to craft malformed email structures. Such struc-
tures can lead to inconsistencies between different email parsers,
thereby disrupting the judgments of malware detection engines. To
efficiently find as many evasion cases as possible, we carried out
our study with the following specific research questions:

RQ 1: How to achieve efficient sample generation that
ensures both comprehensive exploration of ambiguity and
overall structural validity?

Considering that email has complex structural specifications
(e.g., widely existing nested and multi-part structures, close rela-
tionships like control and dependency between the front and back
parts), it can be quite difficult to explore parsing ambiguities manu-
ally. Therefore, we designed an automated approach to generate

 MIME-Version: 1.0
 Subject: <SUBJECT>
 Content-Type: multipart/mixed; boundary=foo

 --foo
 Content-Type: text/plain

 Text part of the outer entity.
 --foo
 Content-Type: multipart/mixed; boundary=bar

 --bar
 Content-Type: text/plain

 Text part of the inner entity.
 --bar
 Content-Type: application/octet-stream; name=att
 Content-Disposition: attachment; filename=<FNAME>

 <VIRUS-PAYLOAD>
 --bar--
 --foo--

 MIME-Version: 1.0
 Subject: <SUBJECT>
 Content-Type: multipart/mixed; boundary=foo

 --foo
 Content-Type: text/plain

 Text part of the outer entity.
 --foo
 Content-Type: multipart/mixed

 --foo
 Content-Type: text/plain

 Text part of the inner entity.
 --foo
 Content-Type: application/octet-stream; name=att
 Content-Disposition: attachment; filename=<FNAME>

 <VIRUS-PAYLOAD>
 --foo--
 --foo--

Figure 4: A motivating example of email structure level de-
tection bypass we discovered. The malformed sample on the
right can bypass the detection engine applied in theMicrosoft
email service Outlook 365.

test samples. We summarize the requirements that the generation
process needs to meet into two aspects: on the one hand, the results
of sample generation should exhibit ample diversity to explore a
wide range of abnormal sample space; on the other hand, the gen-
erated samples should adhere to basic structural norms, avoiding
excessively distorted and meaningless test samples. We propose
our scheme based on constructing email structures according to
relevant standards and then mutating the constructed legal samples
according to random or predefined mutation rules, which endows
sufficient diversity of test samples.

RQ 2: How to simplify the test sample set to avoid sending
a large volume of test emails towards email products and
facilitate more targeted testing?

Most of the widely used email products in the real world are
black-box systems, which makes us incapable of comparing the
parsing differences between each other by source code analysis,
nor can we obtain guidance on test sample generation based on
code execution information of the parsing process. Moreover, a
complete email system has various constraints like user resource
limitations and spam defense, conducting black-box fuzzing directly
on the email system with a large sample mass can be both costly
and unethical. Therefore, we consider filtering and simplifying the
test sample set prior to vulnerability mining of email products, to
be specific, improving the effectiveness of test samples based on
relatively simple parsing components.

The key observation behind this approach is that both the email
parsers in email detectors and clients adhere to email protocol
standards. Therefore, using open-source email libraries can assist in
efficiently creating high-quality email test samples. This approach
can reduce the testing samples for commercial email services and
accelerate the testing process, as invalid samples are rejected by
email libraries in our local environments before being forwarded
to email services.

RQ 3: How to conduct a systematic real-product vulnera-
bility test to detect evasion vulnerabilities?

Email products have multiple specific deployment modes in real-
ity, creating more possibilities for security vulnerabilities related to
parsing ambiguities. In this paper, we consider two types of content

Inbox Invasion: Exploiting MIME Ambiguities to Evade Email Attachment Detectors CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

detection bypass patterns: one is the bypass of the native email
product as a whole, in which the client used by the user is mostly
the Web UI of the email product itself; the other is the bypass of
different combinations of the detection side of the email system
and the client side, which is manifested in the fact that the user
will use an independent third-party client program with the email
service. We will describe the details of vulnerability determination
in Chapter 4.

4 DESIGN AND IMPLEMENTATION
4.1 Workflow
The email parsing ambiguity vulnerability mining system we de-
signed and implemented can be divided into 3 main functional
phases, as shown in Figure 5:

Sample Generation. This phase involves an email sample con-
structor, which automatically generates legitimate email samples
according to the RFC specification, and a mutator, which randomly
mutates legitimate structures to obtain malformed email samples.

Sample Filtering. In this phase, we choose a group of parsers as
a parser test group. Based on the parsing results of different parsers
on the mutated samples, we determine whether the automatically
constructed email samples may indeed trigger parsing differences,
and retain the set of valid test samples.

Bypass Testing. In this phase, we send valid test samples to mail-
box products and email client programs respectively, and combine
the parsing results of these two types of components to determine
and confirm the combinations that are prone to parsing ambiguity
vulnerability-based bypass attacks.

The following describes in detail how each stage works.

4.2 Sample Generation
4.2.1 Constructing Legitimate Samples. In order to obtain test email
samples with adequate usability, first it is necessary to automatically
generate batches of legitimate email structures with an expectation
to be received and parsed by most email products. For this purpose,
two aspects of the rules were considered:

Syntax rules. We extract ABNF from the MIME-related RFC doc-
uments and appropriately transform them into syntax trees that
can be used for sample construction, i.e., the syntax rules that
guide the construction of the samples. ABNF is a paradigm that has
been widely used for describing Internet protocols; similarly to the
paradigm’s formal characteristic of recursively defining different
structure types, the syntax tree applied in the sample generation
component is also characterized as a tree structure with several
combinations of optional substructures, each in sequence, starting
from a root node. By expanding the nodes according to the syntax
tree, we can obtain a structure tree of the email, in which each leaf
node corresponds to a string in the final content of the email, and
the other nodes correspond to different abstract substructures in
the email.

Semantic constraints. It means the control relationships claimed
in the MIME standard to be observed between different parts of
a complete message. While constructing the sample according to

the basic structure provided by the grammar rules, additional con-
straints are imposed on specific occasions, which are listed in Ap-
pendix B.1.

Based on the above, the automatic constructing process of legit-
imate email samples can be summarized as Algorithm 1: starting
from the root node, the Constructor selects the grammar tree nodes
from the queue of nodes to be expanded one by one, checks their
expandable child nodes, and selects the child nodes to be appended
to the sample structure tree without violating the semantic con-
straints; when expanding to the leaf nodes (no more expandable
child nodes), the Constructor fills the corresponding text content
into the sample construction result according to the grammar spec-
ification constraints; and so on iteratively until the expansion is
completed in all leaf nodes.

Algorithm 1 Constructing Legitimate Samples
Input: Grammar Tree 𝐺
Output: Sample Structure Tree 𝑇 , Sample Email Content 𝐸
1: Initialization: Queue of nodes to expand 𝑞, Sample Structure

Tree 𝑇
2: 𝑞.push(𝑇 .root)
3: while !𝑞.empty() do
4: 𝑛 ← 𝑞.pop()
5: if 𝑛.𝑡𝑦𝑝𝑒 != LEAF then
6: 𝑒𝑥𝑝 ← choose_expansion(𝐺 [𝑛])
7: for all 𝑒 in 𝑒𝑥𝑝 do
8: 𝑞.push(𝑒)
9: 𝑛.children.append(e)
10: end for
11: else
12: 𝑠𝑡𝑟 ← 𝑛.get_content()
13: 𝑛.children← 𝑠𝑡𝑟

14: end if
15: end while
16: 𝐸 ← 𝑇 .traverse_leaf_nodes()
17: return 𝑇 , 𝐸

4.2.2 Random Sample Mutating. We next randomly mutate the
structure tree of legal email samples of varying morphology to
explore malformed sample forms that may trigger parsing ambigu-
ities. There are several sample mutation strategies applied in the
mutator:

String Level Mutations. Operations performed on the leaf nodes
of the sample structure tree that enable modifications at the emails’
string level, i.e., deletion, insertion, modification of characters, etc;

Node Level Mutations. Operations performed on subtrees of the
sample structure tree that enable modifications at the level of the
email structure, i.e., deletion, insertion, modification, etc., of a par-
ticular mail partition;

Mutations by rule. Operations that randomly select nodes in
the entire sample structure tree and execute changes according to
predefined mutation rules, see Appendix B.2.

It should be noted that the above string and node-level mutations
are not completely side by side, instead, they can have overlapping

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jiahe Zhang et al.

RFCs

Mutator
email

structure
tree

Phase 1: Sample Generation Phase 2: Sample Filtering Phase 3: Bypass Testing

virus payload

parsing discrepancy
feedback

email parsers

Valid
Sample

Filter

Email Component
Iteractor

Email clients

Email products (with scanner)

Bypass Validator

Constructor

mutation
rules

ambiguity-prone
email

Test Samples

Evasion Case

Contain Same ?

Figure 5: System Structure

mutation effects. For example, when performing node-level muta-
tion, if the inserted node is a leaf node containing only one charac-
ter, the same effect can be achieved by inserting the character at
the beginning of the next leaf node through string-level mutation.
This also means that the granularity of the nodes delineated in the
"node-level variant" will largely determine the range of malformed
samples that can be covered by the variant pattern.

In addition, the introduction of predefined mutation rules com-
pensates for forms of variation that may be more difficult to cover
in the first two schemes, but still fall within the realm of random
variation, with vast room for exploration.

4.3 Sample Filtering
A large number of samples with possible parsing ambiguities can
be obtained using the sample construction scheme described in the
previous section, but these samples are not yet ready to be used
directly for vulnerability testing, mainly for the following reasons:
• The mutation process is randomized and may result in overly
malformed samples whose structures have been damaged so
badly that they cannot be processed at all. Such messages
can not trigger effective bypass of inspection, and therefore
have no test value;
• The mutation position may appear in any part of the email,
some mutation operations may change the original content,
but may not affect the parsing process of various judgments,
and the mutation results will not trigger parsing ambiguity;
• The sample construction module outputs a large number of
samples, all of which are used in the actual mailbox product
testing at a higher cost, and a large number of aberrant
email-sending behaviors for the same test account may lead
to blocking incoming emails.

Therefore, in order to ensure the efficiency and accuracy of
actual email product testing, it is necessary to reduce the size of
the testing sample set by sample filtering. We selected a group of

popular libraries with mail parsing capabilities, called the parser
test set. We conduct effective sample filtering through this approach
mainly based on the following motivation: The implementation
of the actual parsing components in both the client and detection
ends of email products doesn’t typically start from the most basic
logic; rather, it often integrates or calls upon existing underlying
tools. Therefore, triggering parsing discrepancies on mainstream
library functions is likely to result in parsing ambiguities in practical
email products as well. Through the parser testing group, we can
effectively create a parsing simulation environment with lower
testing costs.

The email samples generated in Section 4.1 are individually input
into the parser testing group, invoking each parser in sequence for
attachment extraction. For each sample, we compare the attachment
extraction results across various parsers. We consider a sample to
have successfully triggered parsing ambiguity and retain it as a valid
sample when 1) there is at least one parser capable of extracting
non-empty attachments, and 2) there are differences in parsing
results among all parsers. Otherwise, we drop the sample.

Feedback for Mutation. Despite filtering out the email samples
with a higher possibility of triggering parsing ambiguity, without
proper guidance, there will be a large number of useless mutation
results which can seriously reduce test efficiency. To boost the mu-
tation process, we leverage the extraction result as the feedback
to guide the later mutation. The key observation of this feedback
mechanism is that The same logic flaw appears everywhere. To guide
the mutation process, we define mutation operations as a triple: <se-
lector>, <operator>, <priority>. These respectively represent which
nodes will be applied to such mutation, how the mutator will mu-
tate the nodes, and crucially, the priority of this particular mutation
operation within the mutation queue. The weight can be manually
or uniformly adjusted to 1 during the initial stage. The attributes for
each node are predefined according to its functionality. Specifically,
the initial selectors are all empty, which means they can match

Inbox Invasion: Exploiting MIME Ambiguities to Evade Email Attachment Detectors CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

all the nodes. In each round of mutation, the mutator randomly
selects one mutation operation based on their weights and one
node that matches the selector to perform the mutation. For ex-
ample, to delete a character from a newline node at random, its
corresponding tripe is .newline,remove_random_char,0.8. The mu-
tator will select a node that matches the selector and choose one
of them randomly, and then one of its characters will be deleted.
The mutated sample is then sent to the valid sample filter. Any
recorded inconsistencies indicate potential inconsistencies caused
by this type of mutation operation and will perform as feedback
to guide the mutator, resulting in an increased priority for the mu-
tation operation. When the current selector is empty, a new triple
whose selector is the attribute of the current mutated node with
the same operation and weight value will be inserted into the mu-
tation operation queue. Conversely, if no inconsistencies arise, the
priority of the corresponding mutation operation is penalized and
lowered. Consequently, it can adaptively adjust the priority weights
of mutation operations based on feedback from the filter to improve
efficiency during the mutation process.

4.4 Bypass Testing
In actual email products, the detection end exhibits diverse forms.
Given the strong integration between the detection end and the
email server in many email products, testing the detection module
independently can be challenging. To assess the behavior of the de-
tection end, we conduct a series of email-sending operations toward
the target detection end within the email system. The observation
is focused on whether the emails can successfully pass through the
detection process and be received by the user.

It’s crucial to clarify that the specific goal of vulnerability explo-
ration is to bypass the email content detection engine for inbound
emails, excluding the examination of outbound emails. Therefore,
the email-sending end used for testing should be as pristine as pos-
sible, possessing only the functionalities of email content encapsula-
tion and transmission. This ensures the elimination of interference
from the sender’s content checks, interception, and standardization
of email content.

To meet these requirements, our sending process avoids using
any encapsulated email-sending software, client programs, mailbox
products, or email dispatch services. Instead, we applied automated
scripts that interact with the target through SMTP commands to
achieve the email-sending process.

5 EVALUATION AND FINDINGS
5.1 Experiment Setup
To select email content detectors for testing, we first analyzed the
list of popular email services proposed in Hu et al.’s work [15]
which are equipped with anti-virus detectors. We noticed that cer-
tain email products, despite having different names and domain
names, are actually owned by the same company. Additionally, these
products exhibit consistent behavior in terms of interaction and
parsing. Examples include Yahoo/AOL, 163.com/126.com/yeah.net,
mail.com/GMX, among others. To avoid redundant data analysis,
we chose one product from each set. In addition, we added one
widely used gateway suite for self-hosted mail server gateway,

Amavis & ClamAV, to our test list, and finally got a selection of 16
email content detectors, as shown in Table 1.

We first conducted basic behavior tests on the selected email
products about the presence of virus detection. By directly sending
the original virus attachment to the target mail servers and checking
whether the email is rejected, discarded, isolated, or triggers a
warning, we have confirmed that all the selected 16 email products
have virus detection capabilities, and will take certain measures
towards messages with virus attachments when no protocol-level
modifications are involved. We conducted tests using the anti-virus
test file EICAR 2, the exe virus WannaCry 3, and a PDF virus 4,
respectively.

For email clients, we considered both the WebMail interface of
the email service itself and local client programs. We selected 7
client programs based on a rank list 5 that covers major platforms.
The versions of our target products are shown in Appendix A.1.
We failed to connect to freemail.hu with standalone clients, and
mail.com’s POP3/IMAP services are included in their Premium
product subscription. Therefore, we did not conduct a standalone
client test for these two products.

Based on the sample construction methods outlined in 4.2, we
could generate numerous malformed email samples. As is shown in
Appendix A.2, we select 7 popular email-parsing libraries covering
popular programming language 6 to filter mutated email samples.
By applying the effective sample filtering methods described in 4.3,
we finally utilized 237 email samples for testing.

Considering that some email systems may deploy domain/IP-
based blocklisting for suspicious messages, we take the following
measures to avoid missing emails that could bypass detection. First,
we ensured the proper configuration of SPF records for our sending
domain and utilized IPs with a good reputation for testing. Second,
we strictly controlled the sending frequency and the number of
messages within a single test to avoid triggering limitations. Third,
all emails were directed to our own accounts, thus eliminating the
risk of user complaints leading to blocklisting. Last and most im-
portantly, before each experimental run, we conducted a pre-flight
control test by sending a benign email to confirm its successful deliv-
ery, thereby verifying the absence of any blocklisting mechanisms
in effect.

5.2 Bypass Results
In our evaluation, we generated about 5000 email samples with
the Sample Generation module for the local test and retained 237
potential evasion samples after the Sample Filtering phase. We
applied those samples in the remote test towards real-world email
products and found that 180 of them effectively achieved detection
bypass in at least one email product-client combination, yielding a
success rate of 75.95%.

We found that virus detection bypass could be achieved on all
tested 16 detectors, either by using the product’s own WebMail or
by using a standalone client. Out of all 128 email product-client
combinations (16 detectors with 8 clients each), we discovered that

2https://www.eicar.org/download-anti-malware-testfile/
3https://www.mandiant.com/resources/blog/wannacry-malware-profile
4https://github.com/hacksysteam/CVE-2023-21608
5https://emaiclientmarketshare.com
6https://www.tiobe.com/tiobe-index/

https://emaiclientmarketshare.com

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jiahe Zhang et al.

102 of them exhibited email parsing ambiguities that could lead
to successful detection bypasses. Detailed test result data can be
found in Table 5 of Appendix A.3.

In terms of email products, Outlook has relatively fewer instances
of detection bypass. This is primarily because Outlook employs
strict rejection rules when receiving emails. Most emails with mal-
formed structures are directly discarded and do not reach the re-
cipient’s server. As for email clients, the combination of Android
Gmail with many detectors exhibited no bypass cases, mainly due
to its lower tolerance for malformation in the attachment parsing
process, leading to the failure to parse the majority of malformed
structure emails.

A noteworthy result is that there are fewer or even no detection
bypass issues when using the WebMail provided by the product
itself. We observed 0-bypass with WebMail in 5 products (Gmail,
Naver, Outlook, Yahoo, Zoho). However, this does not necessarily
imply that these products have the best defensive performance
against detection bypass issues. Further exploration revealed some
differences in the virus detection mechanisms of Yahoo compared
to other products: they accept the majority of malformed emails
during the email reception stage and conduct virus detection when
downloading attachments through WebMail, therefore attachments
identified as security threats will fail to download. This implies that
Yahoo has not effectively addressed parsing ambiguities between
detection engines and clients but just deploys additional facilities
to enhance protection for end users. However, this approach is far
from sufficient in scenarios where third-party clients are widely
used. As indicated by the test results in Table 5, the combination
of Yahoo with all standalone third-party clients exhibits more de-
tection bypass vulnerabilities compared to other products. For the
remaining 4 products, even if the mail product itself employs fairly
stringent checking standards, widespread inconsistencies in pars-
ing details among diverse mail components may still result in the
inability of its detector to function as expected.

5.3 Bypass Categories
After excluding known bypass methods mentioned in previous
works [31], we identified 155 newly discovered samples triggering
detection bypass from the 180 effective samples. Among all the
1581 evasion cases presented in Table 5, 80.9% were triggered by
our newly discovered samples, demonstrating the practicality of
MIMEminer in uncovering unknown parsing ambiguity vulnera-
bilities. We also analyzed the effective bypass cases with reference
to the existing RFC specification and found that 105 of these cases
stem from vendors’ failure to strictly adhere to specifications; while
the remaining 75 arise from incomplete RFCs that do not specify
explicit handling procedures for abnormal messages.

We summarized all effective bypass samples into 24 unique by-
pass methods, 19 of which were newly discovered by us. We clas-
sified these methods into three categories based on their bypass
principles: (1) Confusion over Ambiguous Header Fields; (2) Differ-
ences in Parsing Malformed MIME structure; (3) Inconsistencies in
Decoding Algorithms. Specific bypass methods of each category are
listed in Table 2, and the categories that can achieve bypass on
each product can be found in Table 1. In the following parts, we

Table 1: Bypass Testing Results for Email Products.
 Vulnerable G#Partial Vulnerable #No Vulnerability

Web. : WebMail of the Product Cli. : Standalone Client

Ambiguous
Header

Malformed
Structure

Decoding
Algorithm Bypassed

Web. Cli. Web. Cli. Web. Cli.

163.com ✓
Coremail ✓
Fastmail ✓
freemail.hu - - - ✓
Gmail # # # ✓
iCloud ✓
inbox.lv ✓
mail.com - - # - ✓
mail.ru ✓
Naver # # # ✓
Outlook # # # # ✓
qq.com # # ✓
Yahoo # # # ✓
Yandex ✓
Zoho # # # # ✓
Amavis &
ClamAV - - - # ✓

will illustrate the details of each category with some representative
examples.

Category 1: Confusion over Ambiguous Header Fields. To
parse and extract specific content like attachments from email
messages, the parser first needs to get basic properties about the
message entity, which may include whether the message is a single-
part or multi-part entity, the boundary used for multi-part entities,
whether the data is encoded, and the encoding method used, etc.
However, by constructing headers with ambiguity, attackers can
trigger semantic gaps between different parsers. This leads to con-
tent detectors and email clients obtaining different values for the
same properties, thereby achieving detection bypass.

Multiple Content-Type Headers (A3). One of the most effective
methods to trigger ambiguous parsing results is by setting multiple
inconsistent headers or placing multiple inconsistent values within
a single header. This is particularly prominent in MIME, as its
specification does not explicitly prohibit the occurrence of repeated
headers, nor does it define how to handle such exceptions. In Figure
6a, we present an example discovered by MIMEminer that includes
multiple Content-Type headers. In this example, detectors of Gmail,
iCloud, Coremail, etc. determine the message to be a multipart
entity based on the first encountered Content-Type header but
fail to find the multipart boundary foo in the message body, thus
getting no content. Contrarily, clients such as Outlook, eMClient,
etc. recognize the last Content-Type header, therefore correctly
extract the virus attachment.

Category 2: Differences in Parsing MalformedMIME struc-
ture. Besides confusing the detector into applying the wrong prop-
erty to parse a message, an attacker can also construct malformed
content for a certain structure so that the detector fails to recognize
the structure correctly while the email client succeeds in doing so.

Inbox Invasion: Exploiting MIME Ambiguities to Evade Email Attachment Detectors CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

This category from the previous one primarily in two aspects: (1)
the detector fails to parse a certain structure while the client can,
rather than obtaining different results respectively, which also im-
plies that such bypasses often rely on certain error-tolerant features
of clients; (2) abnormal structures are not limited to header fields
but may also appear in the message body.

Thanks to the mutation and filtering schemes of the MIMEm-
iner, we were able to find many malformed samples with detection
bypass capabilities. Apart from those relatively simple variations
in samples such as non-standard line breaks (B3) that have been
covered in studies on other protocols, our discoveries also include
cases that are difficult to discover through manual auditing. The
abnormality in the boundary parameter of nested message parts
mentioned in Figure 4 is just one of the unusual cases (B8), and
we will showcase several other detection bypass cases based on
malformed structures.

Inserted Junk Characters in Headers (B2). In the example shown
in Figure 6b, a byte 0x00 is inserted before the value of the Content-
Transfer-Encoding header. In some languages like C/C++, this byte
is used to denote the end of a string and may result in the Content-
Transfer-Encoding header being truncated during parsing, making
parsers unable to obtain the base64 encoding scheme.We found that
detectors of Gmail, Outlook, mail.ru, etc. can’t notice virus attach-
ments in emails due to this issue, whereas clients like Thunderbird
and Android Gmail ignore the 0x00 byte. Additionally, other junk
characters discovered by MIMEminer that can lead to detection
bypass include equal signs, quotation marks, commas, semicolons
and spaces.

Empty Boundary (B4). The malformed structures causing detec-
tion bypass are not limited to appearing in header fields. As shown
in Figure 6f, we specified an empty boundary parameter for a mul-
tipart entity and applied an empty string in the message body to
separate different parts. According to RFC 2046, the length of the
boundary string should be at least 1 byte. Detectors such as 163.com,
Naver, Zoho, etc., adhere to this specification and are unable to lo-
cate a valid boundary string statement, thus cannot extract the
attachment. However, Thunderbird, eMClient, and 163.com Web-
Mail recognize the empty boundary and correctly divide different
parts.

Category 3: Inconsistencies in Decoding Algorithms. MIME
standards introduced two encoding schemes for binary data: base64
and quoted-printable, both defined in RFC 2045 [13]. However, due
to unclear standard definitions or parsers not strictly adhering to
the RFC, there are many edge cases within the encoding algorithms
that can be used to trigger parsing discrepancies. By constructing
non-standard encoding results, we can cause the detector to obtain
incorrect decoding results, leading it to determine the content as
non-malicious and achieve detection bypass.

Broken Soft-Line-Breaks in quoted-printable Data (C4). In the
quoted-printable encoding scheme, the soft-line-break mechanism
is used to split longer data without line breaks into multiple lines
for transmission, realized by adding equal signs before line breaks
(\r\n). In the example shown in Figure 6d, we added additional
spaces between the soft-line-break symbol and the line break, dis-
rupting the original form of the soft-line-break and violating the
RFC 2045 specification, which states that there should be no spaces
preceding line breaks and such spaces should be discarded. We

found that detectors such as Gmail, iCloud, and qq.com did not
discard spaces as specified, resulting in their decoding results con-
taining redundant invalid content. In contrast, clients like Outlook,
eMClient, and Mac Mail discarded illegal spaces and decoded the
attachment content correctly.

Table 2: Categories of detection bypass and specific methods
included in each. Entriesmarkedwith "*" represent our newly
discovered bypass methods. "CT", "CTE", and "CD" respec-
tively stand for Content-Type, Content-Transfer-Encoding,
and Content-Disposition headers. "b64" and "qp" represent
base64 and quoted-printable encoding schemes.

Bypass Category Valid Bypass Methods

Confusion over
Ambiguous
Header Fields

(A1) multiple encoding schemes
(A2) multiple boundary statements
(A3) *multiple CT headers
(A4) *abnormal capitalization of header values
(A5) *irregular folding structure
(A6) *overlapped header values
(A7) comment within boundary parameter
(A8) *comment within CTE header
(A9) *encoded-word within headers

Differences in
Parsing Malformed
MIME Structure

(B1) *lack of the CD header
(B2) *inserted junk characters in headers
(B3) *non-standard link breaks
(B4) *empty boundary
(B5) *imcomplete terminating boundary
(B6) *missing semicolon before boundary
(B7) *redundant blank line before an entity
(B8) *partition error in nested entities

Inconsistencies in
Decoding Algorithms

(C1) inserted junk characters in b64 data
(C2) b64 chunked encoding
(C3) *inserted padding characters in b64 data
(C4) *broken soft-line-breaks in qp data
(C5) *splitted end-of-line bytes in qp data
(C6) *abnormal capitalization of qp data
(C7) *overlong encoded lines

5.4 Case Study
In this section, we select two representative cases to analyze the
principles behind their detection bypass and introduce their real-
world application effectiveness, both of which involve violations of
existing RFC specifications.

RFC 2045 Violations with Widespread Impact. Due to the
definition of a specific encoding alphabet, the characters in the
output of base64 encoding should always belong to a given set.
According to RFC 2045, if a parser encounters characters outside
the defined alphabet in base64 data, it should ignore invalid char-
acters and continue decoding. However, in our practical testing,
we observed that many email components do not adhere strictly to
this standard, and instead stop decoding and return the undecoded
data to the caller.

In the example shown in Figure 6c (C1), multiple dots are in-
serted into the base64 data based on this principle. We found that
many detectors, including Gmail, Yahoo, iCloud, and Yandex, do
not strictly adhere to the mentioned standard, thereby failing to
detect viruses in the email. On the other hand, all seven tested client

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jiahe Zhang et al.

programs including Thunderbird, Outlook and Android Gmail will
ignore the invalid characters and extract the attachment, which
demonstrates the widespread impact of such threats. We have re-
ported this case to Gmail, and they acknowledged the severity of
the issue and provided us with bug bounty rewards.

RFC 2047 Violations Due to Confusing Specification. In
order to allow non-ASCII content in MIME headers, RFC 2047 pro-
poses amechanism called encoded-word, in which the transmission
of arbitrary content can be achieved by appending encoded content
after the character set name and encoding scheme (B for base64 and
Q for quoted-printable). However, a commonly overlooked aspect
is that although RFC 2047 initially asserted that this mechanism
allows for non-ASCII text in header fields, it also includes numerous
restrictions on its application, such as the prohibition of its use in
parameters of headers, leading to considerable confusion.

In the case illustrated in Figure 6e (A9), we employ the encoded-
word format to declare a boundary string for a multipart entity.
We discovered that detectors of Yahoo, qq.com, Yandex, etc. don’t
support the boundary string in the form of encoded-word, and
instead recognize the whole encoded-word =?US-ASCII?Q?foo?=
as the boundary. In this way, they get text content ending with
--foo--. However, the developers of Mac Mail client seemingly
overlooked the restrictive conditions in the encoded-word specifi-
cation. It parses the boundary parameter in the format of encoded-
word and recognizes foo as the boundary. Consequently, the por-
tion before the first --foo in the message body was discarded as
a preamble (according to RFC 2046), and the client successfully
extracts the virus attachment.

6 DISCUSSION
6.1 Responsible Disclosure
Wehave reported our findings to the affected providers and received
acknowledgments and bug bounty rewards. The response details
of the vendors are shown in Table 6.

• Gmail: acknowledged our report and rated the vulnerability
as medium severity with a bug bounty reward of $500.
• iCloud: acknowledged the reported bypass vulnerability we
discovered and managed to fix the issue.
• Amavis: arranged several discussions with us as well as the
developers of the dependency Perl library MIME-tools [27].
The maintainers showed their concerns about malformed
email structures and stated that a reasonable idea for han-
dling ambiguous messages for a mail security component
should be strict checking and exception reporting, rather
than default error tolerance. Amavis and MIME-tools have
currently fixed the issues in the latest versions and applied
for a CVE (CVE-2024-28054) on this issue.
• Coremail: verified the vulnerability shortly after our report
and confirmed it as Medium Risk. Coremail provided us with
about $500 bug bounty rewards and has already arranged
to fix the vulnerability in the latest releases. They have also
carried out an in-depth discussion with us on such issues in
the hope of realizing a better solution for malformed emails.
• qq.com: promptly responded to our report, rated it as a
high-risk vulnerability, and fixed the mentioned issue. They

thanked us in their hall of fame and offered us a bounty
reward of about $550.
• mail.com: acknowledged our vulnerability report and man-
aged to fix it. They provided us a bounty reward of €500 as
well as a record in their hall of fame.
• Outlook: determined our finding is valid but does not meet
their bar for immediate servicing. They stated that the men-
tioned issue has been marked for future review. However, in
our latest test we found this issue has been fixed.
• mail.ru: indicated that the anti-spam/virus engine checks
the content of the email rather than the specific files con-
tained therein; they will inform the anti-spam team of po-
tential content filtering bypass methods and may address
this by adding static detection rules such as new feature
signatures. But in practice, this does not address all parsing
disambiguation detection bypass schemes in essence.
• 163.com: disregarded our vulnerability report and didn’t
prepare to fix the issue.

We will continue to communicate with the vendors throughout
the vulnerability disclosure process.

6.2 Mitigation
In terms of solving issues related to parsing ambiguities, the first
thing that comes to mind is to require manufacturers to strictly
comply with the latest standards and specifications in the product
development process. Any deviation from the standardized format
should be handled in accordance with the recommendations given
in the specification. Obvious deviations from the standardized for-
mat in the absence of recommendations in the specification should
be regarded as corrupted content, and email components should
return or discard the message, rather than accepting it and adopting
a method of disposal on its own.

The above measures are the simplest and most straightforward;
However, considering the above analysis of practical reasons, this
may still be too idealistic. Complete standardization of the handling
of each component is indeed a suggestion, but the solution to the
problem requires more institutional design. Here we think of several
countermeasures to avoid the problem of parsing ambiguity without
imposing consistency on the parsing components.

Stricter inspection at entry points. Instead of implementing strin-
gent content checks on all components of the mail system, we
believe that special emphasis should be placed on strict checks at
the gateway entry point. On the one hand, if the inbound emails are
filtered out from the first analysis and inspection, the messages with
potential security problems will not reach the subsequent customer
interfaces, thus not triggering the parsing inconsistency; on the
other hand, although the widely-used email products have different
tolerances in parsing the abnormal emails, the process of generating
email contents is still in accordance with the specification, so this
measure will not affect the normal sending and receiving of emails
by ordinary users with email products.

In the actual product testing, the behavior patterns of Gmail and
Outlook mailboxes are very much in line with the characteristics of
this measure. For malformed emails, Gmail will give an abnormal
response code in the SMTP session to refuse to receive the mail;
although Outlook does not have the behavior of rejecting emails in

Inbox Invasion: Exploiting MIME Ambiguities to Evade Email Attachment Detectors CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Pass

Recognize Content-Type as
multipart/mixed

Attacker Outlook, eMClient, Netease client
and 163.com (Web)

Pass

Don't parse content after \x00 and
recognizes no valid encoding

Attacker

Omit \x00 and identifies encoding base64

Pass

Can't decode Base64 content with dots

Attacker Thunderbird, Outlook,Android Gmail, eMClient,
Mac Mail, Foxmail and Yandex (Web)

Pass

Don't support encoded-word in boundary and recognize
 the boundary as =?US-ASCII?Q?foo?=

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_hedaer
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_header
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

Gmail, iCloud, Coremail,
Zoho and 163.com

Recognize Content-Type as
application/octet-stream

Gmail, Outlook, iCloud, mail.ru,
Zoho, 163.com and Naver

Thunderbird, Android Gmail, Foxmail
and freemail.hu (Web)

Gmail, iCloud, Coremail,
163.com and Yandex

Omits dots in Base64 data and
decodes the virus sample

Yahoo, qq.com, Yandex, mail.ru,
 Naver and Coremail Mac Mail

Support encoded-word in boundary
and recognize the boundary as foo

Pass

Retain [space] after soft-line-break
 during the decoding process.

Attacker Outlook, eMClient, Mac Mail
and mail.ru (Web)

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

Gmail, iCloud, qq.com, mail.ru,
163.com and inbox.lv

Omits [space] after soft-line-break

Pass

Can't parse the attachment when the terminating
 boundary cannot be found.

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

Outlook Any client

Parse the attachment regardless
of its following boundary

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Pass

Don't support empty boundary and
extract no attachment

Attacker

Recognize the boundary as a 0-byte string
and extract the virus attachment

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: empty_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: empty_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Coremail, 163.com, Naver
and Zoho

Thunderbird, eMClient
and 163.com (Web)

(a) Different preference of Content-Type headers.

Pass

Recognize Content-Type as
multipart/mixed

Attacker Outlook, eMClient, Netease client
and 163.com (Web)

Pass

Don't parse content after \x00 and
recognizes no valid encoding

Attacker

Omit \x00 and identifies encoding base64

Pass

Can't decode Base64 content with dots

Attacker Any tested client, 163.com(Web)
 and Yandex (Web)

Pass

Don't support encoded-word in boundary and recognize
 the boundary as =?US-ASCII?Q?foo?=

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_hedaer
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_header
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

Gmail, iCloud, Coremail,
Zoho and 163.com

Recognize Content-Type as
application/octet-stream

Gmail, Outlook, iCloud, Amavis, mail.ru,
Zoho, 163.com and Naver

Thunderbird, Android Gmail, Foxmail
and freemail.hu (Web)

Gmail, Yahoo, iCloud, Coremail,
163.com and Yandex

Omits dots in Base64 data and
decodes the virus sample

Yahoo, qq.com, Yandex, mail.ru,
 Naver and Coremail Mac Mail

Support encoded-word in boundary
and recognize the boundary as foo

Pass

Retain [space] after soft-line-break
 during the decoding process.

Attacker Outlook, eMClient, Mac Mail
and mail.ru (Web)

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

Gmail, iCloud, qq.com, mail.ru,
163.com and inbox.lv

Omits [space] after soft-line-break

Pass

Can't parse the attachment when the terminating
 boundary cannot be found.

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

Outlook Any client

Parse the attachment regardless
of its following boundary

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Pass

Don't support empty boundary and
extract no attachment

Attacker

Recognize the boundary as a 0-byte string
and extract the virus attachment

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: empty_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: empty_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Coremail, 163.com, Naver
and Zoho

Thunderbird, eMClient
and 163.com (Web)

(b) Differences in parsing \x00 in the header.

Pass

Recognize Content-Type as
multipart/mixed

Attacker Outlook, eMClient, Netease client
and 163.com (Web)

Pass

Don't parse content after \x00 and
recognizes no valid encoding

Attacker

Omit \x00 and identifies encoding base64

Pass

Can't decode base64 content with dots

Attacker Any tested client, 163.com(Web)
 and Yandex (Web)

Pass

Don't support encoded-word in boundary and recognize
 the boundary as =?US-ASCII?Q?foo?=

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_hedaer
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_header
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

Gmail, iCloud, Coremail,
Zoho and 163.com

Recognize Content-Type as
application/octet-stream

Gmail, Outlook, iCloud, Amavis, mail.ru,
Zoho, 163.com and Naver

Thunderbird, Android Gmail, Foxmail
and freemail.hu (Web)

Gmail, Yahoo, iCloud, Coremail,
163.com and Yandex

Omits dots in base64 data and
decodes the virus sample

Yahoo, qq.com, Yandex, mail.ru,
 Naver and Coremail Mac Mail

Support encoded-word in boundary
and recognize the boundary as foo

Pass

Retain [space] after soft-line-break
 during the decoding process.

Attacker Outlook, eMClient, Mac Mail
and mail.ru (Web)

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

Gmail, iCloud, qq.com, mail.ru,
163.com and inbox.lv

Omits [space] after soft-line-break

Pass

Can't parse the attachment when the terminating
 boundary cannot be found.

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

Outlook Any client

Parse the attachment regardless
of its following boundary

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Pass

Don't support empty boundary and
extract no attachment

Attacker

Recognize the boundary as a 0-byte string
and extract the virus attachment

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: empty_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: empty_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Coremail, 163.com, Naver
and Zoho

Thunderbird, eMClient
and 163.com (Web)

(c) Differences in parsing base64 data with junk dots.

Pass

Recognize Content-Type as
multipart/mixed

Attacker Outlook, eMClient, Netease client
and 163.com (Web)

Pass

Don't parse content after \x00 and
recognizes no valid encoding

Attacker

Omit \x00 and identifies encoding base64

Pass

Can't decode Base64 content with dots

Attacker Thunderbird, Outlook,Android Gmail, eMClient,
Mac Mail, Foxmail and Yandex (Web)

Pass

Don't support encoded-word in boundary and recognize
 the boundary as =?US-ASCII?Q?foo?=

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_hedaer
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_header
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

Gmail, iCloud, Coremail,
Zoho and 163.com

Recognize Content-Type as
application/octet-stream

Gmail, Outlook, iCloud, mail.ru,
Zoho, 163.com and Naver

Thunderbird, Android Gmail, Foxmail
and freemail.hu (Web)

Gmail, iCloud, Coremail,
163.com and Yandex

Omits dots in Base64 data and
decodes the virus sample

Yahoo, qq.com, Yandex, mail.ru,
 Naver and Coremail Mac Mail

Support encoded-word in boundary
and recognize the boundary as foo

Pass

Retain [space] after soft-line-break
 during the decoding process.

Attacker Outlook, eMClient, Mac Mail
and mail.ru (Web)

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

Gmail, iCloud, qq.com, mail.ru,
163.com and inbox.lv

Omits [space] after soft-line-break

Pass

Can't parse the attachment when the terminating
 boundary cannot be found.

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

Outlook Any client

Parse the attachment regardless
of its following boundary

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Pass

Don't support empty boundary and
extract no attachment

Attacker

Recognize the boundary as a 0-byte string
and extract the virus attachment

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: empty_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: empty_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Coremail, 163.com, Naver
and Zoho

Thunderbird, eMClient
and 163.com (Web)

(d) Differences in parsing quoted-printable data with spaces at the end of lines

Pass

Recognize Content-Type as
multipart/mixed

Attacker Outlook, eMClient and Netease client

Pass

Don't parse content after \x00 and
recognizes no valid encoding

Attacker

Omit \x00 and identifies encoding base64

Pass

Can't decode Base64 content with dots

Attacker Thunderbird, Outlook,Android Gmail, eMClient,
Mac Mail, Foxmail and Netease client

Pass

Don't support encoded-word in boundary and recognize
 the boundary as =?US-ASCII?Q?foo?=

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_hedaer
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_header
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

Gmail, iCloud, Coremail,
Zoho and 163.com

Recognize Content-Type as
application/octet-stream

Gmail, Outlook, iCloud, mail.ru,
Zoho, 163.com and Naver

Thunderbird, Android Gmail
and Foxmail

Gmail, iCloud, Coremail,
163.com and Yandex

Omits dots in Base64 data and
decodes the virus sample

Yahoo, qq.com, Yandex, mail.ru,
 Naver and Coremail Mac Mail

Support encoded-word in boundary
and recognize the boundary as foo

Pass

Retain [space] after soft-line-break
 during the decoding process.

Attacker Outlook, eMClient and Mac Mail

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

Gmail, iCloud, qq.com, mail.ru,
163.com and inbox.lv

Omits [space] after soft-line-break

Pass

Can't parse the attachment when the terminating
 boundary cannot be found.

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

Outlook Any client

Parse the attachment regardless
of its following boundary

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Pass

Don't support null boundary and
extract no attachment

Attacker

Recognize the boundary as a 0-byte string
and extract the virus attachment

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: null_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: null_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Coremail, 163.com, Naver
and Zoho Thunderbird, eMClient

(e) Differences in supporting encoded-word in the boundary parameter.

Pass

Recognize Content-Type as
multipart/mixed

Attacker Outlook, eMClient, Netease client
and 163.com (Web)

Pass

Don't parse content after \x00 and
recognizes no valid encoding

Attacker

Omit \x00 and identifies encoding base64

Pass

Can't decode Base64 content with dots

Attacker Thunderbird, Outlook,Android Gmail, eMClient,
Mac Mail, Foxmail and Yandex (Web)

Pass

Don't support encoded-word in boundary and recognize
 the boundary as =?US-ASCII?Q?foo?=

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_hedaer
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: inserted_0_in_CTE_header
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding[\x00]: base64

VmlydXNfQ29udGVudA==

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: b64_junk_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: base64

V.m.l.y.d.X.N.f.Q.2.9.u.d.G.V.u.d.A.=.=

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: encoded-word_boundary
Content-Type: multipart/mixed;
 boundary==?US-ASCII?Q?foo?=

--=?US-ASCII?Q?foo?=
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo--
--=?US-ASCII?Q?foo?=--

Gmail, iCloud, Coremail,
Zoho and 163.com

Recognize Content-Type as
application/octet-stream

Gmail, Outlook, iCloud, mail.ru,
Zoho, 163.com and Naver

Thunderbird, Android Gmail, Foxmail
and freemail.hu (Web)

Gmail, iCloud, Coremail,
163.com and Yandex

Omits dots in Base64 data and
decodes the virus sample

Yahoo, qq.com, Yandex, mail.ru,
 Naver and Coremail Mac Mail

Support encoded-word in boundary
and recognize the boundary as foo

Pass

Retain [space] after soft-line-break
 during the decoding process.

Attacker Outlook, eMClient, Mac Mail
and mail.ru (Web)

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: qp_line_end_blank_char
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att
Content-Transfer-Encoding: quoted-printable

=56=69=72=75=73=[space][\r][\n]
=5F=43=6F=6E=74=[space][\r][\n]
=65=6E=74

Gmail, iCloud, qq.com, mail.ru,
163.com and inbox.lv

Omits [space] after soft-line-break

Pass

Can't parse the attachment when the terminating
 boundary cannot be found.

Attacker

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: incomplete_terminating_boundary
Content-Type: multipart/mixed; boundary=foo

--foo
Content-Type: text/plain

Email with an attachment.
--foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content
--foo

Outlook Any client

Parse the attachment regardless
of its following boundary

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: multiple_CT_headers
Content-Type: multipart/mixed; boundary=foo
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Pass

Don't support empty boundary and
extract no attachment

Attacker

Recognize the boundary as a 0-byte string
and extract the virus attachment

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: empty_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

From: Attacker
To: Victim
MIME-Version: 1.0
Subject: empty_boundary
Content-Type: multipart/mixed; boundary=

--
Content-Type: text/plain

Email with an attachment.
--
Content-Type: application/octet-stream
Content-Disposition: attachment; filename=att

Virus_Content

Coremail, 163.com, Naver
and Zoho

Thunderbird, eMClient
and 163.com (Web)

(f) Differences in supporting empty boundary.

Figure 6: Samples of protocol-level detection bypass found by MIMEminer

the SMTP interaction, the emails whose contents do not conform
to the norms will actually be discarded on the server.

Preference for Native Clients. According to the test results pre-
sented in 5.2, a notable observation is that the combination of email
products with their own native clients (e.g., the product’s integrated
WebMail user interface) is less susceptible to detection bypass vul-
nerabilities. On the one hand, some email products (such as Yahoo)
may employ additional content detection engines in the WebMail
client. On the other hand, native clients developed can have better
consistency in parsing with the content detection components of
the product, fundamentally reducing the likelihood of exploiting
parsing ambiguities to achieve detection bypass. Therefore, from a

user’s perspective, utilizing the product’s native client whenever
possible is a straightforward and effective security measure.

Parsing components ahead of inspecting engine. It is quite com-
mon for email vendors to call on third-party detection engines. The
question is, pitifully email vendors do not have the ability to know
whether the detection engine is consistent in its parsing principles
with their own developed clients and other components related
to mail functionality, and thus parsing ambiguities can occur. We
believe that under the current situation, vendors can still rely on the
black-box parsing behavior of the detection engine by adding pars-
ing components ahead of the detection engine, and delivering the
parsed data content to the detection engine for scanning, instead

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jiahe Zhang et al.

of delivering the whole mail message. Since mail vendors know the
implementation details of their own clients and other components,
they have the ability to implement parsing components ahead of
the detection engine with identical parsing behavior, thus ensuring
that the data content scanned by the detection engine is the same as
that ultimately obtained by the user, and eliminating the possibility
of detection bypass.

Upgrade of the current mail transport environment. The standard
documents for MIME [12–14, 23, 24] were published in 1996 and
have not yet been deprecated. This specification, which is more than
20 years old, is clearly not in line with the prevailing environment.
Taking the encoding scheme – one of the core contents ofMIME – as
an example, the original intention of designing binary encoding was
to make the binary data also applied to the SMTP protocol which
only allows 7bit ASCII characters; however, nowadays the email
data transmission environment is no longer limited to 7bit ASCII
characters, contrarily 8BITMIME, SMTPUTF8 [10, 19, 22] and other
mechanisms that support the transmission of arbitrary bytes have
become highly popular. The idea of encoding data for transmission
has lost its original application value and only brings redundant
processing, which leaves room for kinds of parsing ambiguities.

Therefore, we believe that the current email content specification
should be updated to remove the anachronisms that serve the rigors
of transmission, including eliminating encoding and encapsulating
the original data content directly in the email message. Simpler
data transfer rules mean fewer possibilities for parsing ambiguities
and more direct defense measures.

6.3 Limitation
In order to control the number of test emails sent to real-world
email products, we introduced the sample filtering phase by locally
testing on a group of mainstream email parsing libraries to retain
auto-generated samples that may trigger parsing ambiguities. This
design is derived from the consideration that most real-world email
products are developed based on these parsing libraries, thus allow-
ing for a lower-cost simulation of realistic environments. However,
it should be acknowledged that the behavior of the actual email
product may still differ from the parsing libraries, which means that
the results of local testing may not fully cover bypass vulnerabilities
in real-world products, resulting in certain false negatives. We set a
relatively loose filtering criterion, i.e., "at least one library extracted
non-empty attachments and the parsing result of all libraries dif-
fered", instead of "at least one library correctly extracted the original
attachments and the parsing result of all libraries differed", in order
to mitigate the effect of false negatives.

During the bypass testing phase, a significant amount of interac-
tion with the client is required, including Web UI and standalone
client programs. To closely mimic real-world email user scenarios,
all our tests were conducted through graphical interfaces. Due to
the diverse forms of clients and the absence of batch operation
interfaces, the automation of attachment extraction becomes an in-
evitable challenge. While such automation is not strictly necessary
for the overall research, its deficiency in the practical testing phase
noticeably hinders the operational efficiency of the entire vulnera-
bility discovery system. Addressing this limitation would contribute
to further enhancing the tool’s applicability and usability.

6.4 Ethical Consideration
We consider the ethical considerations in our work to primarily
involve three aspects:

First, all recipient accounts used in our testing are registered
by ourselves, ensuring that malicious attachments are not sent to
any uninformed users. The malicious payload is confined to the
attachment scope within the email and is transmitted in encoded
form, posing no direct threat to the email servers responsible for
receiving or forwarding. We only compare the received attachment
contents from test accounts with the originally intended malicious
content to verify the success of the detection bypass.

Second, our email-sending process strictly limits the sending
rate. The interval between consecutive emails is maintained at 10
seconds or more, and the continuous sending of emails to the same
target mail server does not exceed 30 emails at a time. All our test
emails are sent from hosts within our own domain, with properly
configured DNS records and reverse DNS records. The emails we
send include correctly filled EHLO, Mail From, and From fields, and
email service providers can get in touch with us if there are any
concerns.

Lastly, both open-source and cloud email services encourage
security tests through bug bounty programs. Our testing strictly
follows their bug bounty rules to perform controlled experiments by
sending small-scale traffic to our own accounts. And we responsibly
disclosed the finding details to them.

7 RELATEDWORK
7.1 Parsing Ambiguities Attacks
Jana and Shmatikov proposed two types of attacks [18] based on
file parsing ambiguities against malware detectors: the Chameleon
attack which obfuscates the detector’s heuristics of file type deter-
mination; and the Werewolf attack which exploits format-specific
file parsing differences between the detector and the OS or applica-
tion. Carmony et al. investigated the PDF parser obfuscation attack
techniques [5]. By comparing the differences in extraction results
on the same dataset, they realized multiple obfuscation schemes on
malicious PDF samples.

Apart from file parsing, parsing ambiguity in network protocols
has also drawn attention from researchers. Chen et al. explored the
inconsistent behaviors of different HTTP implementations towards
requests with multiple Host headers, which can lead to serious
attacks such as HTTP cache poisoning and security policy bypass.
Their another work [6] explored the impact of email authentication
based on parsing ambiguities between different components, noting
that an attacker can impersonate an arbitrary senderwithout raising
authentication anomalies. Thework of Reynolds et al. [25] examines
the problem of resolving ambiguities in Uniform Resource Locators
(URLs) and identifies numerous deviations from parsing standards.
Similar issues have been identified in web application firewalls [36]
and CDN systems [7, 37].

As early as 2008, the 3proxy team published a report [2] on by-
passing content inspection software, in which they listed more than
30 specific sample construction methods, including data encoding,
structural damage, redundant characters, etc. Unfortunately, this
report is too dated, and many of the methods mentioned are no
longer applicable in the present systems. More recently, Ullrich

Inbox Invasion: Exploiting MIME Ambiguities to Evade Email Attachment Detectors CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

et al published several reports [29–31] and pointed out that the
complex and flexible nature of the MIME standard allows for the
possibility of conflicting interpretations between different email
components. They also developed an ambiguous sample generation
tool MIME-is-broken [32], but this tool relies heavily on human
predefined malformed rules to construct email samples and has
limited scope to explore anomalous email structures. In addition,
their work did not demonstrate the exact number of samples within
the generated set that could effectively achieve detection bypass in
real-world products.

In recent SMTP-smuggling work [20, 21], researchers discovered
a class of attacks that exploited parsing inconsistencies of the end-
of-data delimiters in SMTP protocol among different mail servers
to smuggle or send spoofed emails while still passing the sender
authentication. They have also examined the impacts of these is-
sues by conducting tests on various real-world email products. In
addition, many studies leverage vulnerabilities in SPF, DKIM, and
DMARC to facilitate email spoofing attacks [34, 35].

To sum up, previous research on parsing ambiguity in email
content exhibits significant shortcomings in terms of the breadth
of structural exploration, the automation of vulnerability discovery,
and the measurement scale of real-world products.

7.2 Automated Vulnerability Discovery and
Differential Testing

Differential testing is a software testing approach based primarily
on the comparison of the behavior or results produced by multiple
implementation systems that are designed for similar functions.
This approach is particularly useful in discovering protocol-level
evasion vulnerabilities and has been successfully applied in some
past research.

Chen et al. proposed mucert [9], an SSL/TLS certificate valida-
tion component discrepancy testing scheme, which diversifies seed
certificates using Markov chain Monte Carlo sampling, revealing
differences between certificate validation implementations. The
authors also migrated similar ideas to the Java Virtual Machine
vulnerability testing problem by proposing the class-fuzz fuzzy
testing approach [8].

Jabiyev et al. developed a suite of differential fuzzing testers for
HTTP request smuggling attacks T-reqs [17], in which a construc-
tion scheme based on context-independent syntax is designed at
the sample generation level.

Foley et al. proposed the HAXSS system [11] for the cross-site
scripting attack (XSS), which formalizes the problem of generating
its payload as a hierarchical reinforcement learning problem and
verifies the advantages of this scheme over black-box fuzzy testing
systems.

Shen et al. proposed a semi-automatic detection framework,
Hdiff [26], which aims at discovering possible new semantic attacks
in HTTP implementations by using differential testing. Sample
generation rules are extracted from HTTP specifications based on
natural language processing techniques in its implementation.

Generally speaking, differential testing methods for vulnerability
discovery at the email content level have not been attempted in
the past. Existing testing methods in areas like HTTP are not di-
rectly applicable to email protocols because they do not adequately

consider unique features of email structures such as nested enti-
ties, built-in encoding schemes, etc. Our work represents the first
attempt to fill this gap.

8 CONCLUSION
Despite the increasing emphasis on content detection for sub-emails
in current email systems, the inconsistency in parsing among dif-
ferent email components impedes the effectiveness of detection.
In this work, we have designed and implemented MIMEminer for
parsing ambiguity vulnerability discovery and identified 24 feasible
content detection bypass methods with 19 newly discovered ones.
In a broad real-world product measurement, we identified 102 com-
binations of detectors and clients vulnerable to detection evasion
based on parsing ambiguity, with our newly discovered methods
triggering 80.9% of all the evasions. Our vulnerability reports were
acknowledged by Google Gmail, Apple iCloud, Tencent qq.com,
Coremail, mail.com, Amavis and Perl MIME-tools.

Furthermore, the issues studied in this paper have broad poten-
tial for extension into other scenarios. Other specific applications
of content detection, such as anti-spam and anti-phishing measures,
also rely on the detection of specific content (including persuasive
language, fraudulent URLs, etc.), therefore utilizing parsing ambi-
guity to achieve similar detection bypasses is feasible. We hope
that our research can drive collaborative updates and iteration of
standard specifications and real-world implementations, fostering
a more secure email environment.

ACKNOWLEDGMENTS
We sincerely thank all anonymous reviewers and our shepherd for
their insightful and constructive feedback to improve the paper.
This work is supported by the National Natural Science Foundation
of China (grant #62272265).

REFERENCES
[1] 1982. STANDARD FOR THE FORMAT OF ARPA INTERNET TEXT MESSAGES.

RFC 822. https://doi.org/10.17487/RFC0822
[2] 3PROXY. 2008. Bypassing the content filtering software. https://web.archive.org/

web/20221129194843/https://3proxy.ru/advisories/content.asp.
[3] Amavis. 2024. Amavis. https://gitlab.com/amavis/amavis.
[4] Hassan Asghar, Benjamin Zi Hao Zhao, Muhammad Ikram, Giang Nguyen, Dali

Kaafar, Sean Lamont, and Daniel Coscia. 2022. SoK: Use of Cryptography in
Malware Obfuscation. Cryptology ePrint Archive, Paper 2022/1699. https:
//eprint.iacr.org/2022/1699 https://eprint.iacr.org/2022/1699.

[5] Curtis Carmony, Mu Zhang, Xunchao Hu, Abhishek Bhaskar, and Heng Yin. 2016.
Extract Me If You Can: Abusing PDF Parsers in Malware Detectors. In NDSS.
https://doi.org/10.14722/ndss.2016.23483

[6] Jianjun Chen, Vern Paxson, and Jian Jiang. 2020. Composition Kills: A Case Study
of Email Sender Authentication. In 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, USA, 2183–2199. https://www.usenix.org/
conference/usenixsecurity20/presentation/chen-jianjun

[7] Jianjun Chen, Xiaofeng Zheng, Hai-Xin Duan, Jinjin Liang, Jian Jiang, Kang Li,
Tao Wan, and Vern Paxson. 2016. Forwarding-Loop Attacks in Content Delivery
Networks. In NDSS.

[8] Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep Differential Testing of JVM
Implementations. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA, 1257–1268.
https://doi.org/10.1109/ICSE.2019.00127

[9] Yuting Chen and Zhendong Su. 2015. Guided differential testing of certificate
validation in SSL/TLS implementations. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (Bergamo, Italy) (ESEC/FSE 2015).
Association for Computing Machinery, New York, NY, USA, 793–804. https:
//doi.org/10.1145/2786805.2786835

[10] Dave Crocker, Dr. John C. Klensin, Dr. Marshall T. Rose, and Ned Freed. 2011.
SMTP Service Extension for 8-bit MIME Transport. RFC 6152. https://doi.org/

https://doi.org/10.17487/RFC0822
https://web. archive.org/web/20221129194843/https://3proxy.ru/advisories/content.asp
https://web. archive.org/web/20221129194843/https://3proxy.ru/advisories/content.asp
https://gitlab.com/amavis/amavis
https://eprint.iacr.org/2022/1699
https://eprint.iacr.org/2022/1699
https://eprint.iacr.org/2022/1699
https://doi.org/10.14722/ndss.2016.23483
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.1145/2786805.2786835
https://doi.org/10.1145/2786805.2786835
https://doi.org/10.17487/RFC6152
https://doi.org/10.17487/RFC6152

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Jiahe Zhang et al.

10.17487/RFC6152
[11] Myles Foley and Sergio Maffeis. 2022. Haxss: Hierarchical Reinforcement Learn-

ing for XSS Payload Generation. In 2022 IEEE International Conference on Trust, Se-
curity and Privacy in Computing and Communications (TrustCom). IEEE Computer
Society, Los Alamitos, CA, USA, 147–158. https://doi.org/10.1109/TrustCom56396.
2022.00031

[12] Ned Freed and Dr. Nathaniel S. Borenstein. 1996. Multipurpose Internet Mail
Extensions (MIME) Part Five: Conformance Criteria and Examples. RFC 2049.
https://doi.org/10.17487/RFC2049

[13] Ned Freed and Dr. Nathaniel S. Borenstein. 1996. Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies. RFC 2045.
https://doi.org/10.17487/RFC2045

[14] Ned Freed and Dr. Nathaniel S. Borenstein. 1996. Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types. RFC 2046. https://doi.org/10.17487/
RFC2046

[15] Hang Hu and Gang Wang. 2018. End-to-End Measurements of Email Spoofing
Attacks. In 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, Baltimore, MD, 1095–1112. https://www.usenix.org/conference/
usenixsecurity18/presentation/hu

[16] Fortune Business Insights. 2024. Email Security Market Size, Share & COVID-
19 Impact Analysis, By Deployment (Cloud, On-Premises, and Hybrid), By
Application (BFSI, Government, Healthcare, IT & Telecom, Media & Enter-
tainment, and Others (Retail, Defense)) and by Regional Forecast, 2023-2030.
https://www.fortunebusinessinsights.com/email-security-market-106607.

[17] Bahruz Jabiyev, Steven Sprecher, Kaan Onarlioglu, and Engin Kirda. 2021. T-Reqs:
HTTP Request Smuggling with Differential Fuzzing. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security (Virtual
Event, Republic of Korea) (CCS ’21). Association for Computing Machinery, New
York, NY, USA, 1805–1820. https://doi.org/10.1145/3460120.3485384

[18] Suman Jana and Vitaly Shmatikov. 2012. Abusing File Processing in Malware
Detectors for Fun and Profit. In Proceedings of the 2012 IEEE Symposium on Security
and Privacy (SP ’12). 2012 IEEE Symposium on Security and Privacy (SP), USA,
80–94. https://doi.org/10.1109/SP.2012.15

[19] Dr. John C. Klensin and YangWoo Ko. 2012. Overview and Framework for
Internationalized Email. RFC 6530. https://doi.org/10.17487/RFC6530

[20] Timo Longin. 2023. SMTP Smuggling - Spoofing E-Mails Worldwide. https://sec-
consult.com/blog/detail/smtp-smuggling-spoofing-e-mails-worldwide/.

[21] Timo Longin. 2023. SMTP Smuggling – Spoofing E-Mails Worldwide. https:
//media.ccc.de/v/37c3-11782-smtp_smuggling_spoofing_e-mails_worldwide.

[22] Wei MAO and Jiankang Yao. 2012. SMTP Extension for Internationalized Email.
RFC 6531. https://doi.org/10.17487/RFC6531

[23] Keith Moore. 1996. MIME (Multipurpose Internet Mail Extensions) Part Three:
Message Header Extensions for Non-ASCII Text. RFC 2047. https://doi.org/10.
17487/RFC2047

[24] Dr. Jon Postel, Dr. John C. Klensin, and Ned Freed. 1996. Multipurpose Internet
Mail Extensions (MIME) Part Four: Registration Procedures. RFC 2048. https:
//doi.org/10.17487/RFC2048

[25] Joshua Reynolds, Adam Bates, and Michael Bailey. 2022. Equivocal URLs: Un-
derstanding the Fragmented Space of URL Parser Implementations. In Computer
Security – ESORICS 2022, Vijayalakshmi Atluri, Roberto Di Pietro, Christian D.
Jensen, and Weizhi Meng (Eds.). Springer Nature Switzerland, Cham, 166–185.

[26] Kaiwen Shen, Jianyu Lu, Yaru Yang, Jianjun Chen, Mingming Zhang, Haixin
Duan, Jia Zhang, and Xiaofeng Zheng. 2022. HDiff: A Semi-automatic Framework
for Discovering Semantic Gap Attack in HTTP Implementations. In 2022 52nd
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE Computer Society, Los Alamitos, CA, USA, 1–13. https://doi.org/10.
1109/DSN53405.2022.00014

[27] Dianne Skoll. 2024. MIME-tools. https://metacpan.org/dist/MIME-tools.
[28] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G. Bringas.

2015. SoK: Deep Packer Inspection: A Longitudinal Study of the Complexity of
Run-Time Packers. In 2015 IEEE Symposium on Security and Privacy (SP). IEEE
Computer Society, Los Alamitos, CA, USA, 659–673. https://doi.org/10.1109/SP.
2015.46

[29] Steffen Ullrich. 2014. Dubious mime - conflicting content-transfer-encoding
headers. https://noxxi.de/research/content-transfer-encoding.html.

[30] Steffen Ullrich. 2015. Dubious mime - conflicting multipart boundaries. https:
//noxxi.de/research/mime-conflicting-boundary.html.

[31] Steffen Ullrich. 2022. Mime is broken. https://2022.bsidesmunich.org/talks/001_
07-W9SSVK-mime_is_broken/.

[32] Steffen Ullrich. 2022. Mime is broken. https://github.com/noxxi/mime-is-broken.
[33] Verizon. 2019. 2019 Data Breach Investigations Report. https://www.verizon.com/

business/resources/reports/2019-data-breach-investigations-report-emea.pdf.
[34] Chuhan Wang, Yasuhiro Kuranaga, Yihang Wang, Mingming Zhang, Linkai

Zheng, Xiang Li, Jianjun Chen, Haixin Duan, Yanzhong Lin, and Qingfeng Pan.
2024. BREAKSPF: How Shared InfrastructuresMagnify SPF Vulnerabilities Across
the Internet. In NDSS.

[35] Chuhan Wang, Kaiwen Shen, Minglei Guo, Yuxuan Zhao, Mingming Zhang,
Jianjun Chen, Baojun Liu, Xiaofeng Zheng, Haixin Duan, Yanzhong Lin, and

Qingfeng Pan. 2022. A Large-scale and Longitudinal Measurement Study
of DKIM Deployment. In 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, MA, 1185–1201. https://www.usenix.org/
conference/usenixsecurity22/presentation/wang-chuhan

[36] Qi Wang, Jianjun Chen, Zheyu Jiang, Run Guo, Ximeng Liu, Chao Zhang, and
Haixin Duan. 2024. Break the Wall from bottom: Automated Discovery of
Protocol-Level Evasion Vulnerabilities in Web Application Firewalls. In 2024
IEEE Symposium on Security and Privacy (SP). IEEE Computer Society, Los Alami-
tos, CA, USA, 132–132. https://doi.org/10.1109/SP54263.2024.00129

[37] Linkai Zheng, Xiang Li, Chuhan Wang, Run Guo, Haixin Duan, Jianjun Chen,
Chao Zhang, and Kaiwen Shen. 2024. ReqsMiner: Automated Discovery of CDN
Forwarding Request Inconsistencies with Differential Fuzzing. In NDSS.

A EVALUATION DETAILS
A.1 Versions of Test Targets
We list the versions of the real-world test targets in Table 3. Since
most mail services do not release their system versions, the ones
listed here are primarily client programs for our test.

Table 3: Versions of Test Targets

Product Version
Mozilla Thunderbird 115.9.0
Microsoft Outlook 16.0
Foxmail 7.2.25.228
eM Client 9.2.2038
Netease Mail Master 4.17.9.1008
Mail for MacOS 16.0
Gmail for Android 2024.04.07.622678535
Amavis 2.13.0
ClamAV 1.3.1

A.2 Sample Filtering Setup Detail
As is listed in table 4, to cover common programming languages,
we select 7 email-parsing libraries to filter out samples that tend to
trigger parsing ambiguities.

Table 4: Email-Parsing Libraries used in Sample Filtering

Language Email-Parsing Library
email

Python mail-parser
flanker

JavaScript mailparser
Java Apache Commons Email
C# MimeKit
PHP php-mime-mail-parser

A.3 Detection Bypass Results
We present the detailed results of real-world detection bypass tests
with MIMEminer in Table 5. We excluded Protonmail, Tutanota,
and sapo.pt as they did not exhibit virus detection behavior. We did
not test freemail.hu and mail.com using standalone clients because
we could not connect to the email servers using a client.

https://doi.org/10.17487/RFC6152
https://doi.org/10.1109/TrustCom56396.2022.00031
https://doi.org/10.1109/TrustCom56396.2022.00031
https://doi.org/10.17487/RFC2049
https://doi.org/10.17487/RFC2045
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC2046
https://www.usenix.org/conference/usenixsecurity18/presentation/hu
https://www.usenix.org/conference/usenixsecurity18/presentation/hu
https://www.fortunebusinessinsights.com/email-security-market-106607
https://doi.org/10.1145/3460120.3485384
https://doi.org/10.1109/SP.2012.15
https://doi.org/10.17487/RFC6530
https://sec-consult.com/blog/detail/smtp-smuggling-spoofing-e-mails-worldwide/
https://sec-consult.com/blog/detail/smtp-smuggling-spoofing-e-mails-worldwide/
https://media.ccc.de/v/37c3-11782-smtp_smuggling_spoofing_e-mails_worldwide
https://media.ccc.de/v/37c3-11782-smtp_smuggling_spoofing_e-mails_worldwide
https://doi.org/10.17487/RFC6531
https://doi.org/10.17487/RFC2047
https://doi.org/10.17487/RFC2047
https://doi.org/10.17487/RFC2048
https://doi.org/10.17487/RFC2048
https://doi.org/10.1109/DSN53405.2022.00014
https://doi.org/10.1109/DSN53405.2022.00014
https://metacpan.org/dist/MIME-tools
https://doi.org/10.1109/SP.2015.46
https://doi.org/10.1109/SP.2015.46
https://noxxi.de/research/content-transfer-encoding.html
https://noxxi.de/research/mime-conflicting-boundary.html
https://noxxi.de/research/mime-conflicting-boundary.html
https://2022.bsidesmunich.org/talks/001_07-W9SSVK-mime_is_broken/
https://2022.bsidesmunich.org/talks/001_07-W9SSVK-mime_is_broken/
https://github.com/noxxi/mime-is-broken
https://www.verizon.com/business/resources/reports/2019-data-breach-investigations-report-emea.pdf
https://www.verizon.com/business/resources/reports/2019-data-breach-investigations-report-emea.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-chuhan
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-chuhan
https://doi.org/10.1109/SP54263.2024.00129

Inbox Invasion: Exploiting MIME Ambiguities to Evade Email Attachment Detectors CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 5: Number of Exploitable Bypass Samples for Each Email Product with Virus Detection

Web
Interface Thunderbird Outlook

(client) Foxmail eM Client Netease
(client)

MacOS
Mail

Android
Gmail

163.com 14 13 15 23 15 16 17 3
Coremail 12 18 17 18 13 12 9 3
Fastmail 4 3 3 3 6 3 2 23
freemail.hu 17 - - - - - - -
Gmail 0 11 18 2 9 2 3 0
iCloud 9 20 15 28 21 28 12 0
inbox.lv 10 11 16 11 5 8 5 0
mail.com 4 - - - - - - -
mail.ru 8 23 20 4 23 4 18 17
Naver 0 24 16 14 34 2 20 42
Outlook 0 5 2 2 10 2 5 0
qq.com 2 23 15 5 25 10 20 6
Yahoo 0 78 79 73 79 82 55 6
Yandex 8 9 6 5 9 5 21 8
Zoho 0 13 12 5 27 5 18 32
Amavis & ClamAV - 2 4 2 6 1 - -

B DESIGN DETAILS
B.1 Semantic Constraints
The ABNF in the RFC documents defines the specification of the
various email structures, but is not sufficient to specify the relation-
ship between different structures. Therefore, MIMEminer sets the
following semantic constraints during the sample construction pro-
cess in 4.2.1 to ensure the legality of the automatically constructed
email samples.

• For email entities ofmultipart types, the Content-Transfer-
Encoding and Content-Disposition headers do not ap-
pear in the header field.
• For email entities ofmultipart types, the boundary parameter
is set in the Content-Type header.
• In the multipart message body, the separating string between
the two embedded entities matches the boundary parameter
in the header of this message.
• If the Content-Transfer-Encoding header exists in the en-
tity header, the data content in the entity body needs to be
encoded according to the specified encoding scheme.
• For each email entity, a unique Content-ID value needs to
be assigned.
• For the Content-Disposition: attachment headers, a
filename parameter is set to specify the filename of the
attachment.

B.2 Predefined Mutation Rules
While the random mutation strategies in 4.2.2 can theoretically
cover a vast sample space, the introduction of predefined mutation
rules that are prone to triggering parsing ambiguities can further
improve the validity of the test sample. We applied the following
predefined mutation rules in MIMEminer:

• Add pairs of characters to wrap part of a string, including
quotes, parentheses, and angle brackets.
• Add special structure like folding which consists of a line-
break and following null characters.
• Insert characters at regular intervals.
• Change the case of characters.
• Simultaneous mutation of boundary strings declared in the
header and applied in the body.
• Apply the encoded-word form to header values.

C VULNERABILITY DISCLOSURE DETAILS
Below we show the details of the received responses for our vulner-
ability reports till now, including the vendor’s hazard assessment
of the vulnerabilities, and the current status of fixations.

Table 6: Responses of Vulnerability Disclosure

Vendor Vulnerability Assessment Current Status
Gmail Medium Severity Will Fix
iCloud Valid Fixed
Amavis Valid Fixed
Coremail Medium Severity Will Fix
qq.com High Severity Fixed
mail.com Valid Fixed
Outlook Valid Fixed
mail.ru Disregarded Won’t Fix
163.com Disregarded Won’t Fix

	Abstract
	1 Introduction
	2 Background
	2.1 Email MIME Protocol
	2.2 Email Delivery and Attachment Detection

	3 Overview
	3.1 Threat Model
	3.2 Motivating Example
	3.3 Research Questions

	4 Design and Implementation
	4.1 Workflow
	4.2 Sample Generation
	4.3 Sample Filtering
	4.4 Bypass Testing

	5 Evaluation and Findings
	5.1 Experiment Setup
	5.2 Bypass Results
	5.3 Bypass Categories
	5.4 Case Study

	6 Discussion
	6.1 Responsible Disclosure
	6.2 Mitigation
	6.3 Limitation
	6.4 Ethical Consideration

	7 Related Work
	7.1 Parsing Ambiguities Attacks
	7.2 Automated Vulnerability Discovery and Differential Testing

	8 Conclusion
	Acknowledgments
	References
	A Evaluation Details
	A.1 Versions of Test Targets
	A.2 Sample Filtering Setup Detail
	A.3 Detection Bypass Results

	B Design Details
	B.1 Semantic Constraints
	B.2 Predefined Mutation Rules

	C Vulnerability Disclosure Details

