
Internet’s Invisible Enemy: Detecting and Measuring Web Cache
Poisoning in the Wild

Yuejia Liang
Tsinghua University

Beijing, China
liangyj21@tsinghua.org.cn

Jianjun Chen∗
Tsinghua University; Zhongguancun

Laboratory
Beijing, China

jianjun@tsinghua.edu.cn

Run Guo
Tsinghua University

Beijing, China
gr15@tsinghua.org.cn

Kaiwen Shen
Tsinghua University; Clouditera Inc

Beijing, China
kaiwenshen17@gmail.com

Hui Jiang
Tsinghua University; Baidu Inc

Beijing, China
jianghui01@baidu.com

Man Hou
Zhongguancun Laboratory

Beijing, China
houman@zgclab.edu.cn

Yue Yu
Beijing University of Posts and

Telecommunications
Beijing, China

yuyue_999@bupt.edu.cn

Haixin Duan
Tsinghua University; Quancheng

Laboratory
Beijing, China

duanhx@tsinghua.edu.cn

ABSTRACT
Web cache poisoning (WCP) has posed significant threats to Internet
security by causing the cache server to deliver malicious responses
to innocent users. This results in widespread denial of access to
website resources and potential injection of harmful payloads. How-
ever, prior works on WCP vulnerability have been fragmented and
conducted in a case-by-case form, lacking a systematic analysis
of the threat landscape. In this paper, we fill this research gap by
conducting a systematic evaluation of WCP vulnerabilities at scale.
We propose HCache, a novel testing methodology to facilitates the
widespread identification of WCP vulnerabilities. We evaluated
our methodology against Tranco Top 1000 domains and their sub-
domains, and found that over 1,000 websites across 172 domains,
representing 17% of the evaluated domains, are vulnerable to WCP.
In particular, we have identified 7 new attack vectors stemming
from previously unexplored caching headers. We have responsibly
disclosed the vulnerabilities to the affected websites and received ac-
knowledgements and bug bounties from world-famous companies,
such as Alibaba, Adobe, Huawei, and Microsoft.

CCS CONCEPTS
• Networks → Network measurement; • Security and privacy
→ Network security;Web application security.

KEYWORDS
Network Security, Measurement, Web Cache, Web Cache Poisoning
∗Corresponding author.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690361

ACM Reference Format:
Yuejia Liang, Jianjun Chen, Run Guo, Kaiwen Shen, Hui Jiang, Man Hou,
Yue Yu, and Haixin Duan. 2024. Internet’s Invisible Enemy: Detecting and
Measuring Web Cache Poisoning in the Wild. In Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security (CCS
’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3658644.3690361

1 INTRODUCTION
To prevent unnecessary Internet traffic and enhance data transmis-
sion efficiency, web caching facilities are extensively used. They
store frequently requested data resources, reducing the need for
repeated data transfers. Given web cache’s advantages, it has be-
come a critical infrastructure component of the Internet. How-
ever, when compromised by malicious actors, web caching facilities
pose significant risks to the Internet. Research indicates that issues
with web caching can lead various security consequences, such as
Denial-of-Service (DoS), Cross-site scripting (XSS), and information
leakage [4, 16, 17, 19, 28].

Attacks against web cache typically fall into two categories, the
web cache deception (WCD) and the web cache poisoning (WCP) [24,
25]. WCD aim to deceive the cache into making confidential in-
formation publicly available online, whereas WCP involve poi-
soning the cache with harmful payloads that are then distributed
to unsuspecting users. In recent years, Mirheidar et al. [24, 25]
studied the severity of WCD by measuring Alexa Top websites,
demonstrating the widespread threats on the Internet. However,
due to the complexity, WCP have been studied in a case-by-case
form [4, 16, 17, 19, 24, 28], focusing on revealing the specific vul-
nerabilities while lacking a global Internet view of the severity. As
the WCP poses a severe threat to the Internet, it is urgent to detect
and prevent the vulnerabilities ahead of the attacker on the global
scale.

In this paper, we aim to fill this gap by performing a system-
atic detection of WCP vulnerabilities at scale. To achieve this goal,

https://orcid.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690361
https://doi.org/10.1145/3658644.3690361

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuejia Liang et al.

we need to address three research questions: (1) How can we gen-
erate testing requests that systematically probe cache poisoning
vulnerabilities? (2) How can we accurately detect potential web
cache poisoning? (3) How can we assess the impact of web cache
poisoning while minimizing disruption to normal users?

To address these questions, we introduce a novel testing method-
ology, HCache, designed to detect WCP vulnerabilities. For the
first question, we employ a cache-key-aware approach that sys-
tematically generates and mutates requests to identify fields not
included in cache keys, thereby exposing potential inconsistencies.
For the second question, we utilize a three-step detection strategy
involving the issuance of a normal request, an attack request, and a
validation request. This strategy allows us to analyze differences in
the response’s status code, content, and length to detect potential
WCP vulnerabilities. For the third question, we incorporate cache
buster variables in our request parameters, ensuring that our testing
does not disrupt normal website operations while maintaining the
efficacy of our detection approach.

We evaluated HCache against Tranco Top 1,000 domains in-
volving 22,114 subdomains with 51,596 distinct URL links. Our
evaluation discovers more than 1,000 websites across 172 domains,
constituting 17% of the domains evaluated, are vulnerable to WCP.
Moreover, we identify 7 new attack variants to trigger WCP, includ-
ing HTTP protocol headers, scope requests, conditional requests,
and so on. Meanwhile, we investigated the caching differences be-
tween HTTP/2 and HTTP/1.1 and found that the WCP problem is
also prevalent in HTTP/2. Therefore, WCP is still a serious prob-
lem, and network operators and caching service providers should
take appropriate measures to solve this problem. To the best of our
knowledge, this study represents the first systematic, large-scale
evaluation of WCP within a scientific framework. We reported
the vulnerabilities to the affected websites and received acknowl-
edgements from over 15 companies, including globally renowned
ones like Adobe, Alibaba, Huawei, and Microsoft. Additionally, we
received bug bounties totalling over $1,000 from these entities.

In summary, we make the following contributions:
• We introduced a novel testing methodology for large-scale
evaluation of websites for WCP on the Internet, along with
a practical detection system named HCache1.

• We carried out a comprehensive analysis of the Tranco Top
1,000 domains and their subdomains, discovering over 1,000
websites across 172 domains vulnerable to WCP, indicating
that 17% of measured domains are at risk.

• We discovered 7 new attack vectors that can cause WCP at-
tacks and found theWCP issues are still prevalent in HTTP/2.
We have responsibly reported the vulnerabilities to the af-
fected websites and received acknowledgements and over
$1,000 bug bounties from many companies such as Adobe,
Alibaba, Huawei, and Microsoft.

2 BACKGROUND
2.1 Web Cache
Web cache reduces network traffic and optimizes application per-
formance by caching frequently used network resources. It can be

1https://github.com/phantomnothingness/HCache

Attacker

Victim
Web Cache Web Server

① GET /account.php/notexist.jpg

② 200 OK
 Cache-Control: no-store
 account.php <!>

③ GET /profile/notexist.jpg 200 OK
account.php <!>

Figure 1: Process of web cache deception

categorized into private caching and shared proxy caching. Private
caches are caching mechanisms within the web client itself (e.g., the
browser cache[30]) and within the web server (e.g., the WordPress
plugin cache[36]). Shared proxy caching mainly includes various
proxy servers and CDNs.

The reports released by the three major CDN providers, Akamai,
Cloudflare, and Fastly, indicate that a significant amount of network
traffic passes through caching proxy communication each year [34].
A measurement study by Guo et al. [6] shows that among the top
1,000 domains in the Alexa ranking list, 74% of websites utilize
CDN services for content distribution and network acceleration.
Additionally, there are many independent caching proxies (such as
Squid [32], Varnish [33]) and caching servers (such as Apache [10],
Nginx [26]) distributed throughout the Internet, indicating that
web caching devices have become critical infrastructure for the
Internet.

Cache servers typically store static and commonly accessed re-
sources like HTML, JS, CSS, images, and other media. Most web
caches, due to their shared nature, do not cache dynamic, person-
alized, or sensitive content. The HTTP/1.1 specification’s “Cache-
Control” header directs caching devices on handling responses,
such as “Cache-Control: no-store” to prevent storage. Despite RFC
mandates for adherence to these headers, some caching devices and
CDNs offer options to bypass them. A prevalent caching strategy
involves rules based on resource paths and extensions, like caching
only JPG, ICO, CSS, or JS files.

2.2 Web Cache Attack
As an important infrastructure in the Internet, web cache requires
utmost security. There are primarily two attack vectors targeting
cache servers based on their caching characteristics [25].

Web Cache Deception (WCD) is an attack that tricks the appli-
cation into storing sensitive content belonging to other users in the
cache. Subsequently, the attacker retrieves this content from the
cache. Figure 1 shows the process of WCD: 1)The attacker tricks the
victim into visiting a URL that requests /account.php/nonexist.jpg.
2)The request reaches the web server and ignore the non-existent
part of the URL. Web server send back a successful response with
account.php, which has victim’s private account. The web cache
store the response, interpreting it as a static image. 3)The attacker
visits the same URL accessing the victim’s information stored in
the cache.

Web Cache Poisoning (WCP) is to induce the application to
store malicious content in the cache. The normal requests from

Internet’s Invisible Enemy: Detecting and Measuring Web Cache Poisoning in the Wild CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Attacker

Victim

Web Cache Web Server

① Send Malicious
HTTP Request

② Forward
Malicious Request

③ Return Error Response

③ Cacheable
④ Send Normal
HTTP Request

④ Hit Malicous Cache

Figure 2: Process of web cache poisoning

other users may hit the cache, resulting in access to malicious
content. Figure 2 shows the process of WCP: 1)The attacker sends a
carefully crafted malicious HTTP request. 2)The cache server fails
to filter the malicious request and forwards it to the web server.
3)The malicious request triggers an exception at the web server,
resulting in a harmful response that the cache server stores. 4)A
normal request initiated by the victim hits the cached malicious
resource.

These two attacks have two main differences. (1) The attack
techniques are different: WCD achieves its goal by constructing
abnormal URLs, it requires the victim to click on the malicious
URL to deceive the cache. WCP can exploit various parts of the
HTTP request to poison the cache, directly resulting in the victim
receiving abnormal responses. (2) The attack objectives are different:
WCD aims to steal sensitive information from the cache, whereas
WCP aims to make the victim access error responses in the cache.
Researchers have conducted extensive measurement studies on
WCD [24, 25]. However, there is currently a lack of large-scale
measurements regarding WCP. This study focuses on the research
gap in the deficit of a global WCP threat overview, by designing
and implementing the HCache to study the severity on the Internet.

WCP has the merit of a wide-range attacking impact with just
a simple attack. Specifically, attackers only need to send a single
attacking request, while affecting numerous global Internet users.
The larger the traffic of a website, the greater the impact it can
cause. In the entire attack chain, WCP can be conducted in conjunc-
tion with other attacking techniques to broaden the attack surface,
and their final impact closely depends on the injected malicious
payloads. If an error response is returned, it can lead to a Denial
of Service (DoS) attack. If the response is dynamically generated,
injection of JavaScript code can result in Cross-Site Scripting (XSS)
attacks. If the location of redirect responses can be manipulated,
arbitrary page replacement can occur. In a word, when combin-
ing WCP with other attack methods, the severity can be further
expanded.

2.3 Limitation of Existing Research
Current studies share a common limitation as they are all case-by-
case investigations heavily reliant on empirical knowledge. Chen et
al. proposed a new method for WCP by exploiting the Host header,
termed "Host of Trouble" [1]. James Kettle introduced a novel tech-
nique to execute such attacks using HTTP request fields, including
X-Forwarded-Host, request parameters, fat get request [16, 17].
Nguyen et al. proposed CPDoS, using three methods to conduct a

DoS attack [28]. Mirheidari et al. conducted large-scale measure-
ments on the impact of WCD on the Internet [24, 25].

These studies have two main limitation: (1) They are case-by-
case studies and do not systematically analyze the cache poisoning
vectors that may result from different HTTP fields, which could
miss many new attack vectors, as we demonstrate later; (2) They
lack large-scale measurements. Existing studies have either only
conducted manual testing for CDNs and HTTP implementations, or
only conducted small-scale testing for certain attack types, leading
to many vulnerability instance undiscovered. Therefore, there is an
urgent need for a systematic tool capable of conducting large-scale
measurements to identify WCP vulnerabilities.

3 OVERVIEW
3.1 Threat Model
Essentially, web cache poisoning (WCP) attacks stem from the prob-
lem with cache key. The cache key serves as the unique identifier
to locate and isolate cached objects, determining whether a request
hits the cache or not. Figure 3 presents an example of cache keys
in HTTP requests. It typically consists of the request method, host-
name, and URI. A cache hit occurs when a new request matches the
cache key of a previous stored object that still remains valid within
the cache; if not, the resource is retrieved from the web server.

Is Cache Key

Not Cache Key

GET /1.css?x=1 HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0 Windows NT 10.0
Accept: text/html,*/*
Accept-Language: zh-CN,zh

Cache Key: GET | example.com | /1.css?x=1

Figure 3: A example schema for cache keys in HTTP request

Attacker

Victim

Web Cache
Web ServerGET /a/ HTTP/1.1

Host: example.com
X-Malicious-Header: value

GET /a/ HTTP/1.1
Host: example.com
X-Malicious-Header: value

GET /a/ HTTP/1.1
Host: example.com
...

GET /a/ HTTP/1.1
Host: example.com
...

MISS
Forward the request

Cache with Cache Key : GET | /a/ | example.com

HTTP/1.1 400 Bad Request
…
some error

HTTP/1.1 400 Bad Request
…
some error

HTTP/1.1 301 Moved Permanently
Location: attack.com
HTTP/1.1 301 Moved Permanently
Location: attack.com

<html>
...
<script>alert(1);</script>

<html>
...
<script>alert(1);</script>

OR

OR

Malicious Response A

Malicious Response B

Malicious Response C

Has the same Cache Key
HITMalicious Response

Figure 4: An example of web cache poisoning

Figure 4 presents a example of WCP, where an attacker con-
structs a malicious request with evil content in the headers. The

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuejia Liang et al.

cache server forwards this request, triggering a malicious response
from the web server. Malicious responses could be an error page, a
redirection to a 3rd-party website controlled by the attacker, or a
page containing malicious content. Finally, the cache server then
caches this evil response, and victim requests with the same cache
key hit the poisoned cache, leading to a WCP attack. While WCP
has posed a severe threat to the Internet, there is lack of systematic
evaluation of such vulnerabilities at scale.

3.2 Methodology
In this paper, we present a novel testing methodology to detect
WCP on the Internet. However, developing such a methodology
needs to answer the following research questions.

Q1: How canwe generate testing requests to systematically
probe web cache poisoning vulnerabilities?

Previous works [24, 25, 27] usually utilize manual approaches
or collect known exploits to generate testing requests, and do not
systematically explore various HTTP fields and specific caching
behaviors. This can lead to incomplete testing and the potential
oversight of new attack vectors. To address this, we have developed
a cache-key-aware approach to systematically generate and mu-
tate HTTP requests to uncover WCP vulnerabilities. We start with
standardized HTTP requests to incorporate typical header fields by
leveraging syntax rules derived from HTTP RFCs. We then enumer-
ate different HTTP fields such as request line, headers, and body to
uncover those fields not included in cache keys. Then we mutate
non-cache-key fields and body of requests to probe inconsistencies
between web caches and web servers, aiming to uncover potential
exploits. This allows for a more targeted and systematic generation
of test cases for essentially identifying potential WCP issues.

Q2: How can we detect Web Cache Poisoning accurately?
We design a three-phase testing approach to detect WCP ac-

curately. First, we send a normal request to establish a baseline
response. This is followed by a especially crafted request, where
potential vulnerabilities are systematically tested. The response to
this request is then compared to the baseline response, identifying
discrepancies that may indicate a successful poisoning attack. Fi-
nally, a validation request is sent to confirm the initial assessment
of WCP vulnerability. This approach allows us to pinpoint the exact
conditions under which WCP can occur, providing a reliable means
of assessment.

Q3: How can we assess the impact of WCP while minimiz-
ing disruption to normal users?

Minimizing the impact on normal users while assessing WCP
is crucial. To achieve this, we employ cache buster variables in our
request parameters to isolate web caches. These variables, crafted
as unique random values and cache keys, ensure that normal user
requests do not intersect with our crafted testing requests, thereby
preventing access to potentially poisoned caches. This technique
ensures that our testing process does not disrupt the normal oper-
ations of the website or the access of legitimate users, while still
maintaining the high efficacy of WCP detection.

4 HCACHE: DESIGN AND IMPLEMENTATION
4.1 Workflow
Based on the above methodology, we developed HCache, a large-
scale detection system to detect web cache poisoning (WCP), de-
picted in Figure 5. HCache comprises three core modules: the Pre-
processing Module, the Test-case Generation Module, and the Cache-
poisoning Detection Module.

(1) The Preprocessing Module processes the seed domain list
through expansion, survivability checks, deduplication, and cacheable
URL identification, outputting detectable URLs.

(2) The Test-case Generation Module identifies cache keys, pro-
duces standard requests, and generates test cases for potential WCP.

(3) The Cache-poisoning Detection Module synthesizes the prior
modules’ outputs to craft attack requests and assesses WCP vulner-
abilities using varied attack payloads.

The following paragraphs present detailed information on the
related working steps and specific modules.

4.2 Stage A. Preprocessing
First, the list of URLs to be tested needs to be determined before the
following real-world measurement. Thus, the Preprocessing Module
includes the initial three steps, including subdomain extension,
target URL finding, and URL deduplication.

Step A.1) Subdomain Extension. Starting from initial domains,
this process recursively crawls related HTTP/HTTPS pages to
gather subdomains with a 200 status code, thereby expanding the
domain list for further steps. Domains that do not return a 200
status code are disregarded, as they are not typically accessed by
web clients. The next step then generates the initial set of URLs for
testing based on the collected subdomains.

Step A.2) Target URL Finding. This component is a website
crawler that uncovers URL resources through deep traversal and
automates website visits using Python’s Requests library. To en-
hance efficiency for large-scale detection of popular websites, it
operates with multiple concurrent threads. In summary, the pro-
gram sequentially crawls the target domain’s homepage, extracting
static resources such as JavaScript, images, and videos.

Relevant studies indicate that using the HTTP header fields in
the response (e.g. ’age’, ’x-cache’) to determine whether a page is
cached is a relatively accurate method[25]. Pages detected using
this approach form a true subset of all cached pages, as certain
websites may omit cache-related information in their responses. We
referenced official documentation from major caching vendors to
understand the specific caching behavior of different cache identity
headers. Additionally, the crawler discovers numerous related URLs
on third-party websites, including OSS storage, JS hosting, and self-
built CDN services, and automatically adds these domains into the
domain discovery list.

Step A.3) URL Deduplication. The deduplication module en-
hances the efficiency of large-scale cache-poisoning detection.Many
web applications generate customized pages based on query strings
or URL path parameters, leading to similar URL structures being
cached together with the same vulnerabilities. Exhaustive testing
of each URL is time-consuming and resource-intensive. To avoid re-
dundant detection of similar URLs, obtained URL lists are processed.
Utilizing the SimHash algorithm [31], we developed a program for

Internet’s Invisible Enemy: Detecting and Measuring Web Cache Poisoning in the Wild CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Tranco Top
1k

BugsBugs

①Subdomain

Extension
②Target URL Finding ③URL Deduplication

①Standard HTTP

Request Creation

②HTTP Request Line Mutation

③HTTP Request Headers Mutation

④HTTP Request Body Mutation

⑤Other Illegal HTTP Request Mutation……

Cache BusterCache Buster
①Detecting Request

Generation

Web Server

②Response Difference

Analysis

③Poisoning

Validation

A. Preprocessing

B. Test Case Generation

C. Cache Poisoning Detection

Target URL List

Figure 5: Overview of our large-scale measurement system:HCache

fuzzy matching and URL similarity calculation to consolidate simi-
lar URLs.

For example, example.com/users/bob/blog1 and example.com/users
/alice/article2 may exhibit high similarity. Initially, we generalize
them based on letters (represented by C), numbers (represented by
D), and special characters (represented by S): example.com/CCCCC
/CCC/CCCCD. Subsequently, we assign weights according to the
hierarchical levels of the path, where higher-level directories have
greater weights. Next, we use a directory of different levels as
keywords to calculate feature vectors. We compute similarity by
utilizing the Hamming distance between feature vectors, and URLs
with excessively high similarity are deduplicated. In the end, this
process yields a set of URLs for testing, and filtering out URLs in this
manner significantly reduces the testing workload. It also avoids
overconsumption of the target server’s resources with redundant
scans.

4.3 Stage B. Test Case Generation
The test case generation is the core module of HCache that outputs
different request variations to comprehensively cover differentWCP
methods. It includes standard HTTP request generation, cache key
detection, and multiple request mutation methods.

Step B.1) Standard HTTP Request Creation. Informed by
expert insights and traffic analysis, we’ve crafted standard HTTP
request templates for common methods like HEAD, GET, and POST.
These templates are designed to avoid rejection by mimicking nor-
mal HTTP traffic, including typical header fields like ‘Host’, ‘User-
Agent’, ‘Cookie’, and ‘Accept-Encoding’, with the ‘Host’ field adapt-
ing to the target domain automatically. This equips HCache with a
basic suite of HTTP requests.

Step B.2) HTTP Request Line Mutation. The HTTP request
Line, comprising the Method, URI, and Protocol Version, is often a
cache key, thus we explore the impact of different fields of non-
cache keys, such as method case insensitivity, parameter changes,
and protocol version arbitrarily specified variants. WCP can occur
when a non-cache key field affects content generation or causes

server errors. For parameter mutation, we collect a list of com-
mon parameters, which HCache utilizes to mutate HTTP request
parameters.

Step B.3) HTTP Request Headers Mutation. The request
header includes fields both from standard RFC specifications and
popular web servers and CDN vendors. This complexity, coupled
with variations between middlebox and web server, often leads to
inconsistencies and potential WCP vulnerabilities. It also brings
a great challenge to the detection of WCP: how to cover as many
types of attacks as possible? To this end, we propose the following
variants based on the characteristics of different headers.

i.Request Headers Scanning: Some fields in the HTTP request
header may also affect the web server’s execution logic. A common
trick is to utilize forwarding headers (e.g., ‘X-Forwarded-Host’, ‘X-
Forwarded-Scheme’, ‘X-Forward-Port’), which are often used to pass
information among multi-hop HTTP servers. WCP occurs when
the cache server uses these fields for routing without adding them
to the cache key. Similarly, web server that fetches cookie fields
to generate readback data dynamically is vulnerable. Meanwhile,
numerous real-world headers may dynamically affect the caching
results, and different CDN vendors have their customized headers
for access control. This method involves gathering common request
headers on the Internet and systematically altering HTTP requests
with these headers to evaluate their effect on WCP.

ii.Special Headers Scanning: Certain HTTP request headers, as
defined in RFCs, have specific value requirements, such as the ‘If-
Unmodified-Since’ header specifying a date format. Besides, web
servers will format the header of a request, if a header’s value does
not conform (e.g., a random string), it’s disregarded by web servers,
hindering WCP detection. To address this, we generate syntax-
compliant values that adhere to RFC specifications for testing.

iii.Blacklist HTTP Request Mutation: While WAFs block scanners
or crawlers by common filtering mechanisms (eg. return 403 Illegal
Access Response when detecting ‘User-Agent’ as SQLMap), some
cache servers may not include ‘User-Agent’ in the cache key, cre-
ating an opportunity for WCP. HCache employs a blacklist-based

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuejia Liang et al.

mutation mechanism that assesses the impact of security scanners
(e.g. Nuclei) and web crawlers (e.g. PyCurl) on the cache. Addition-
ally, it tests the cache’s resilience to malicious ‘Referer’ messages
from phishing sites and common blacklist strings used by WAFs
(e.g. <script>alert(1)</script>).

Step B.4) HTTPRequest BodyMutation.While GET requests
typically lack a body, some HTTP services process bodies in GET
requests, causing abnormal behaviors like redirects or 400 error
responses. Additionally, rewriting methods like ‘X-HTTP-Method-
Override’ can extend the attack payload. When a cache server trans-
parently forwards such requests, and the web server responds with
an exception consequently, it becomes susceptible to WCP.

Step B.5) Other Illegal HTTP Request Mutation. Beyond
mutating the three main components of the HTTP request, we
crafted other illegal HTTP requests to probe WCP vulnerabilities,
examining the effects of overly long headers and invalid characters.

Cache Buster. To finalize the test requests for WCP, we em-
ployed a cache buster with two objectives: on the one hand, mod-
ifying the value of the cache buster avoids interactions between
targeting the same URL and prevents invalidation caused by new
attack requests hitting the previous cache. On the other hand, it en-
sures that normal user requests do not trigger responses poisoned
by our tests, as they do not carry our randomly generated cache
buster.

4.4 Stage C. Cache Poisoning Detection
Under this component, HCache first initiates WCP detection for
each URL in the pending list, then analyzes the response to identify
vulnerabilities. HCache performs multiple rounds of WCP testing
rapidly using multi-threading, encompassing request generation,
response analysis, and cache poisoning validation.

Step C.1) Detecting Request Generation. This module is used
to generate three HTTP requests, which are normal request, attack
request and validation request. The normal request is obtained by
adding the request parameter A to the standard request generated in
Step B.1), which aims to check whether the cache buster is effective
and collect the normal response of the target website for subsequent
analysis. The attack request is obtained by adding the different
request parameter B from the test cases generated in the previous
stage. The validation request is similar to the normal request, the
only difference is it has the same request parameter B as the attack
request.

Step C.2) Response Difference Analysis. HCache identifies
potential WCP by analyzing differences between the response re-
turned by a normal request and an attack request. It assesses three
types of information: a) whether the status code of the HTTP re-
sponse has changed; b) whether the length of the HTTP response
body has changed; c) whether the HTTP response contains addi-
tional content of the poisoning request compared with the normal
request. If one of the above conditions occurs, HCache determines
that the target server may be threatened by WCP.

Step C.3) Poisoning Validation.When HCache finds a website
that may haveWCP vulnerabilities, it will use the validation request
to verify if the cache will be poisoned. This validation request is
sent within 1 second to verify that the WCP vulnerability can be
successfully exploited. If the website is vulnerable, the validation

response matches the last poisoned content, and the cache identity
field should display ”HIT”.

False positives in the measurement process are caused by mul-
tiple similar requests from the same client being rejected by the
web server. When both an attack request and a validation request
return the same error response, HCache mistakenly assumes that
the error request was cached. In order to eliminate false positives,
HCache will initiate two subsequent tests of the potential WCP
vulnerability detected after a certain period. And all discovered
potential vulnerabilities will be cross-validated on clients in differ-
ent regions. Finally, we also manually verified the discovered WCP
vulnerabilities.

5 MEASUREMENT STUDY AND FINDINGS
5.1 Data Collection
Our work use Tranco Top 1,000 domains as seeds, and extracts
a total of 114,560 subdomain information, among which 31,350
surviving websites can be accessed via HTTP(S). On this basis,
more resource is crawled on these websites by the crawler, thus
expanding the target domains to 4,427,590 different URL links. To
increase the testing efficiency, URLs with similar paths are de-
emphasized during the experiment, and finally, 1,417,004 URL links
are obtained. Then, the websites that contain the cache identity
header in the HTTP response packet are selected as targets for
testing. A total of 22,114 domains containing 51,596 different URL
links were tested in this chapter. Then we conducted detection
measurements from 7 different VPS servers across the world, such
as New York, Frankfurt, Sydney and Tokyo. For each detected case,
multiple repeated experiments are conducted across different geo-
locations to eliminate accidental false positives that may arise. In
the end, more than 1,300 websites were found to have web cache
poisoning (WCP) vulnerabilities, containing 1,556 different URL
links.

5.2 Cache Key Detection
To prevent the poisoned cache from affecting normal users during
testing, we use a cache buster to isolate the cache. The test request
must carry a crafted cache key different from the normal user’s
request, and the cache key used for the cache buster should be
"irrelevant" and its modificationmust not affect the normal response
content. To this end, we designed a pre-experiment on cache key
detection to find the best cache buster.

We determine which fields are commonly used as cache keys by
modifying different parts of theHTTP request. From all the cachable
URLs detected, URLs were randomly selected for each accessible
domain of the Tranco top 1,000. In most cases, if the parameter
cannot be recognised by the server, it will ignore without affecting
the corresponding content, indicating that the request parameter is
a kind of effective cache buster. It will be used in the subsequent
large-scale cache poisoning measurement to avoid affecting the
normal user’s access.

5.3 Overview
We conducted large-scale WCP detection experiments on popular
websites on the Internet, and found 1,354 WCP vulnerabilities,
affecting some world-famous websites, which have high Tranco

Internet’s Invisible Enemy: Detecting and Measuring Web Cache Poisoning in the Wild CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 1: Newly discovered attack vectors by HCache

Type Common Attack payloads Vulnerable Websites*

Internal Route Header Attack

X-Request-Id: 123456789 wikia.com
Fastly-Client-Ip: 123456789 fandom.com
Gpt-Tags-Enabled: 123456789 ipage.com
X-Amz-Request-Id: 123456789 stanford.edu
Fastly-Soc-X-Request-Id: 123456789 domain.com
X-Amz-Website-Redirect-Location: 123456 marriott.com

HTTP Identification Header Attack

Auth-Key: 123456789 sinaimg.cn
X-Auth-User: 123456789 bing.com
Authorization:123456789 wsimg.com
X-Authorization: 123456789 ziffdavis.com
Client-Proxy-Auth-Required:123456789 ccmbg.com

HTTP If Header Attack

If-Match: 123456789 usa.gov
If-Range: 123456789 aig.com
If-None-Match: 123456789 bluehost.com
If-Modified-Since: 123456789 starbucks.com

HTTP Protocol Header Attack

X-Forwarded-SSL: on/off/nonsense pcmag.com
X-Forwarded-Scheme: nothttps/http(s) cisco.com
X-Forwarded-Proto: http(s)/ssl/nonsense mashable.com
X-Forwarded-Protocol: http(s)/nothttps/nonsense getflywheel.com

HTTP Range Header Attack

Range: bytes=cow stats.com
Range: bytes=9-4 miele.co.nz
Range: bytes=-1024,0 starbucks.com
Range: bytes=0-,0-,0-,0- chiltondiy.com

HTTP Upgrade Header Attack

Upgrade: 123456789 lefigaro.fr
Upgrade: HTTP/0.9 smtp2go.com
Upgrage: Websocket, RTA/x11 salesforce.com
Upgrade: HTTP/2.0, SHTTP/1.3, IRC/6.9 disney.io

HTTP Coding Header Attack

Accept: 123456789 fcc.gov
Accept-Encoding: 12345 house.gov
Transfer-Encoding: error europa.eu
zTRANSFER-ENCODING: asdf landmarkcinemas.com

*: The vulnerable websites in the table only show the base domain. The subdomains and paths were redacted for
ethical considerations.

Table 2: Detection datasets and vulnerable websites statistics

Initial domain name Domain name extension Cache pages Cache Poisoning Vulnerabilities

Number of domain names 1,000 114,560 22,114 1,354
Number of URLs - 1,417,004 51,596 1,556

rankings and a large amount of web traffic, as shown in Table 1
and Table 2. Besides, some websites may even have more than
one vulnerabilities. Once an attacker compromises these websites
through one of the identified WCP vulnerabilities, it will affect a
large number of global Internet end-users.

We compare our detection results with existing studies in Table
3 and Table 4. Compared with previous work, our study is more
systematic and comprehensive in terms of attack vector coverage
and measurement scale, with many new attack methods and vul-
nerabilities discovered. In total, 14 types of attack techniques are
discovered by HCache, 7 of which are newly discovered vectors.

Figure 6 shows the percentage of different attacks, from which
we can find that known attacks still account for more than half
of the websites found to have WCP vulnerabilities, indicating that

various vendors are still not in place to protect against known
WCP attacks. In addition to the known issues, we also found that
many other new HTTP fields may lead to WCP. This suggests that
any non-cache key could potentially be at risk of WCP. Protection
against a single attack method is not enough to fully defend against
the effects of WCP.

Figure 7 presents the distribution of vulnerable websites with
respect to their Tranco ranks, exhibiting a fairly uniform. This
suggests thatWeb Cache Poisoning is pervasive among the websites
in our dataset with no strong connection to their popularity ranking.

Moreover, we tested the impact of WCP in HTTP/2, using the
same variant of the scanning test onwebsites deployedwithHTTP/2.
We found that all the vulnerabilities that existed in HTTP/1.1 still
existed in HTTP/2. About 90% of the websites share caches between

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuejia Liang et al.

Table 3: Number of websites with ≥ 1 vulnerabilities found
by HCache

Attack type Number

New Attack Vectors

Internal Route Header Attack 237
Identify Header Attack 118
If Request Attack 79
Protocol Header Attack 69
Range Request Attack 46
Upgrade Request Attack 25
Coding Header Attack 19

Vectors in CPDoS
HTTP Header Oversize (HHO) 269
HTTP Method Override (HMO) 149
HTTP Meta Character (HMC) 56

Vectors in Blogs

Forwarded Header Attack 96
HTTP Parameter Attack 84
Fat Get Request Attack 67
Blacklist Attack 40

HTTP Header Oversize 20%

HTTP Method Override 11%

Forwarded Header Attack 7%

HTTP Parameter Attack 6%

Fat Get Request Attack 5%

HTTP Meta Character 4%Blacklist Attack 3%

Internal Route Header …

Identify Header Attack 9%

If Request Attack 6%

Protocol Header Attack 5%
Range Request Attack 3%

Upgrade Request Attack 2% Coding Header Attack 1%

Figure 6: Impact ratio of different attack vectors

0

5

10

15

20

25

V
u

ln
er

a
b

le
 S

it
es

Tranco Rank
100 200 300 400 500 600 700 800 900 1000

Figure 7: Distribution of vulnerable websites in Tranco rank-
ing

HTTP/1.1 and HTTP/2, i.e., after sending an HTTP/1.1 request to
poison a cache, a normal HTTP/2 request afterward will still hit
the poisoned cache, and vice versa. This suggests that an HTTP/2
to HTTP/1.1 transition may have occurred, implying that attacks
targeting HTTP/1.1 could affect services utilizing HTTP/2.

5.4 Findings
We present an overview of our findings about attack vectors. We
identified 14 types of attack vectors that could lead to cache poison-
ing, among which 7 types are newly discovered. Table 1 shows the
new attack vectors we discovered and lists some specific payloads
that can cause poisoning as well as the affected websites.

Internal Route Header Attack. A CDN is a large distributed
network with a large number of internal nodes that perform dif-
ferent transmission and caching functions. Therefore, CDNs also
implement some special headers to pass routing information during
internal transmission. Attackers can abuse these headers to trigger
CDNs to throw exceptions, ultimately leading to WCP. These head-
ers include Fastly-Client-Ip, Fastly-Soc-X-Request-Id, X-Amz-Website-
Redirect-Location, X-Amzn-CDN-Cache, etc. This is the attack found
to affect most websites besides the HTTP Header Oversize Attack,
with 234 websites affected.

HTTPAuthenticationHeader Attack. In certain APIs or gate-
way systems, authenticating HTTP requests is a common require-
ment. Some services use headers like Authorization, X-Auth-User
and Auth-Key for this purpose. An attacker can exploit this by send-
ing a request to the cache server with these headers. The cache
server forwards them to the web server. The web server finds that
the value of the header is illegal and returns a response with a
denial of access. The cache server retains the incorrectly cached
resource, returning it for equivalent requests. HCache found 118
websites have this problem.

HTTPProtocol Header Attack.Cache servers use headers like
X-Forwarded-SSL, X-Forwarded-Scheme, X-Forwarded-Proto, and X-
Forwarded-Protocol to identify client connection protocols. However,
these headers may impact web server processing. Some servers
respond with a 301 redirect. If the redirect request retains these
headers and redirects to the URL itself, it causes a DoS attack due
to excessive redirects. As per the HTTP standard, 301 responses
are cached, leading victims to hit the cache. In this scenario, if
an attacker utilizes headers such as X-Forwarded-Host to control
the redirected link address, it becomes easy to direct victims to a
malicious site for subsequent attacks. A total of 69 websites are
vulnerable.

HTTP Range Header Attack. Clients utilize the Range header
to request specific portions of a resource, widely supported by
most intermediate servers for tasks like multi-threaded downloads.
However, certain web servers lack support, leading to potential
semantic differences with cache servers. Some web servers may
support Range requests but report errors when processing mal-
formed ones (e.g. Range: bytes=100-90). HCache found 46 websites
have this problem.

HTTP If Header Attack. HTTP standard headers like If-Match,
If-Range, and If-Modified-Since determine if a web server meets spec-
ified conditions. However, HCache discovered some web servers
generate 4xx or 5xx errors when processing these requests. If the
cache server caches this status code, it will result in WCP. HCache
found 79 websites have this problem.

HTTP Upgrade Header Attack. HTTP protocol allows up-
grading an established connection to a new, incompatible protocol
using mechanisms like Upgrade: Websocket. If an attacker initiates

Internet’s Invisible Enemy: Detecting and Measuring Web Cache Poisoning in the Wild CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 4: Comparison with existing research

Research Attack Vector Target Vulnerable Websites
CPDoS [27] HHO HMO HMC Alexa top 500 12

Redefining Unexploitable blog[16] Forwarded Attack Manual testing 11*
Novel Pathways to Poisoning blog [17] Para, Blacklist, and Fat GET Manual testing 8*

Our work 14 types of attack Tranco top 1,000 domains and their subdomains 1,354

*: The authors did not fully disclose the number of vulnerabilities in their blogs, and the statistics in the table are derived from the cases in their
report.

an unsupported upgrade request (e.g., Upgrade: HTTP/3.0) or a mal-
formed one (e.g., Upgrade: HTTP/0.9), web server may return an
incorrect status code, potentially leading to a WCP. HCache found
25 websites have this problem.

HTTP Coding Header Attack. The HTTP protocol uses head-
ers like Accept, Accept-Encoding, and Transfer-Encoding to identify
encoding formats. If an attacker sets a malformed or illegal value
in these headers, it may trigger an exception at the web server,
potentially resulting in WCP. HCache found 19 websites have this
problem.

What’s more, HCache also found many websites have known
attacks. Although these attacks have been presented in previous
articles[16, 17, 28], they still account for more than half of all vul-
nerabilities, so it is necessary to analyze how such attacks are
exploited.

HTTP Header Oversize Attack. The HTTP protocol standard
does not impose a limit on the length of the request header. There-
fore, different Web middleboxes implement different restrictions.
A DoS attack may exist if the request length allowed by the cache
server exceeds the limitations of the web server. An attacker can
initiate an HTTP request with a length between the cache server
and web server. The cache server forwards the malicious request to
the web server, and an error response triggered at the web server
that would have resulted in a DoS attack had it been cached by
the cache server. Although this vulnerability is a known one and
has been disclosed for many years, it still affects the most targeted
websites with a total of 269.

HTTP Method Override Attack. HTTP defines request meth-
ods like GET, POST, DELETE, and PUT. Some systems only support
GET and POST. To overcome this, web frameworks use helper head-
ers like X-HTTP-Method-Override. Attackers may exploit this by
sending a GET request with an override field set to DELETE. If the
server doesn’t handle DELETE requests, it returns a 405 error. As
per RFC9110, cache servers cache this error, causing subsequent
equivalent requests to result in a DoS attack. A total of 149 websites
were found to have this issue.

HTTP Meta Character Attack. This attack utilizes a request
header with harmful metacharacters, exploiting semantic differ-
ences between the cache server and the web server. The cache
server may tolerate certain special characters, forwarding them,
while the web server, processing the request, triggers an error page,
resulting in a DoS attack. Metacharacters involved could include
control characters like newline (\r), carriage return (\n), or any
Unicode control character. Attackers leverage this to launch WCP

against vulnerable websites. HCache found 56 websites vulnerable
to this attack.

Fat GET Attack. Cache servers usually cache GET requests by
default, excluding the HTTP request body as a cache key. Despite
the HTTP standard prohibiting GET requests from having a body,
some web applications parse fat GET request bodies, allowing dy-
namic responses. This opens the door to WCP. HCache enhances
detection with headers like X-HTTP-Method-Override, expanding
the attack vector. The web server, influenced by X-HTTP-Method-
Override, treats the request as a POST, attempting to generate a
dynamic link from the body. The cache server, ignoring this, uses
the cache key of the original GET request and URL. When a user
triggers a regular request hitting the attacker’s tainted cache, con-
tent hijacking occurs. HCache found 67 websites has this problem.

HTTP Parameters Attack. There are many applications that
choose to extract parameter values from requests to dynamically
generate response content. If the web server uses the values in the
request parameters to dynamically generate content, and the web
server does not perform any filtering on the string, an attacker can
construct an XSS attack payload to launch an attack. If the cache
server’s cache key does not contain the request parameter fields
in the URL, the cache is hit when a normal user initiates a request,
resulting in malicious cache samples being distributed to the client,
ultimately causing an XSS attack. Similar flaws were found on 84
websites.

HTTP Forwarded Header Attack. Reverse proxies (e.g., load
balancers, CDNs) rely on routing host information to determine
the web server for fetching web resources. RFC7239 introduces
the Forward header for this purpose. However, headers like Host,
X-Forwarded-Host, X-Forwarded-Port, and Forwarded are commonly
used by reverse proxies to identify the original routing host. This
can be exploited for WCP. Attackers can manipulate these headers
to control the cache server’s routes back to the source, potentially
causing the cache server to read malicious data or the web server
to reject responses. As these headers are not part of the cache key,
victims may unwittingly hit the attacker’s poisoned cache, leading
to an attack. HCache found 96 websites have this vulnerability.

Blacklist Attack. WAFs often use blacklists to block malicious
traffic. HCache explores three blacklisting mechanisms: manipulat-
ing User-Agent with security scanners (e.g., sqlmap) and crawlers
(e.g., Crawler), inserting known phishing site domain names (e.g.
spam.com) into the Referer header, and randomly adding common
attack payloads (e.g. <script>alert(1)</script>) to certain headers.
HCache exploits inconsistencies in blacklist support between cache

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuejia Liang et al.

server and web server. An attacker sends a request with a mali-
cious string, triggering an exception on the web server. The web
server’s WAF responds with a 403 Forbidden Access. The cache
server incorrectly caches the resource, blocking even normal users
from accessing the target site. HCache found 40 websites have this
problem.

6 THREAT ANALYSIS
The victimwebsite can suffer from various losses, such as reputation
degradation, supply chain attacks, or even monetary loss. In this
paper, we further categorized these WCP vulnerabilities based on
the specific attacking threats. Table 5 shows the vulnerabilities that
can result from different types of attacks.

Table 5: Threats that stem from different attack vectors

DoS XSS AUR*

Internal Route Header Attack !

Identify Header Attack !

If Request Attack !

Protocol Header Attack ! !

Range Request Attack !

Upgrade Request Attack !

Coding Header Attack !

HTTP Header Oversize (HHO) !

HTTP Method Override (HMO) !

HTTP Meta Character (HMC) !

Forwarded Header Attack ! ! !

HTTP Parameter Attack !

Fat Get Request Attack !

Blacklist Attack !

*AUR: Arbitrary URL Redirection

Cache Poisoned Denial of Service. DoS attack is the most
basic attack that can be caused by web cache poisoning (WCP). It
can be caused by simply constructing an attack request that triggers
an error at the web server. We found that even though CPDoS has
been disclosed for many years, there are still many websites that
are subject to such attacks, such as harvard.edu, taobao.com, mail.ru,
and huawei.com.

We have also found many other HTTP headers that can lead to
DoS attacks. All of the 7 new attack vectors discovered by us can
cause service inaccessibility on subdomains of adobe.com, intuit.com,
skype.com, and sina.com.cn, etc. A common feature of this type of
attack is that the cache server does not comply with the RFCs
and caches error status codes that should not be cached. Even if
the RFCs were followed, X-HTTP-Method-Override: NONSENSE can
be used to poisonvisualstudio.microsoft.com with 405 Method Not
Allowed. nvidia.com and sap.com will return 404 Not Found when
processing a request with X-Forwarded-Host: attack.com. Both 404
and 405 response status codes are heuristically cacheable in RFC.

Cache Poisoned Cross-Site Scripting.An attacker can exploit
these WCP vulnerabilities to launch beyond DoS attacks on vic-
tim websites. When exploited in conjunction with other attacking
techniques, it may also lead to more severe damage. In fat GET
attack and request parameter attack, the web server dynamically

generates a response using the request parameters or request body,
but the cache server caches these dynamically generated responses
as static pages. Therefore, the attacker can inject malicious XSS
payloads into the response. HCache found that some websites will
include parameters or request body in the response. Our further
validation revealed that some websites do not filter request con-
tent and can inject XSS payloads. edu.sina.com.cn, in.ign.com and
blackfriday.com have such vulnerabilities.

Cache Poisoned Arbitrary URL Redirection. Previous re-
search found X-Forwarded-Host can be used to control the actual re-
sponse page, but our results show that when websites receive these
headers containing unknown URLs (such as X-Forwarded-Host: at-
tack.com), they will ignore them or return an error response such as
400 Bad Request. It suggests that many websites have already fixed
this vulnerability. However, we newly discovered X-Forwarded-
Proto header can re-establish the connection, and will return 301
redirect responses. Combined with the X-Forwarded-Host header,
the redirected page can be controlled, resulting in an arbitrary page
redirect attack. The attacker can implement subsequent higher-
order attacks if the victim accesses the attacker-controlled page.

Take one of the subpages in themeforest.net as an example. First,
we establish an HTTPS connection with it. Then we can send
a request with X-Forwarded-Scheme: http and X-Forwarded-Host:
attack.com. The former changes the protocol to HTTP and returns
a redirection response, while the latter specifies the response’s
location, redirecting to an attacker-controlled website. 301 Moved
Permanently is cached by the cache server, causing subsequent
victim requests to be redirected to attacker-controlled pages as
well.

7 DISCUSSION
7.1 Responsible Disclosure
We try our best to responsibly disclose the related vulnerabilities
to the vendors of affected websites. First, we actively contacted the
affected vendors through several third-party vulnerability disclo-
sure platforms (e.g., Hackerone, Bugcrowd, and Intigriti), discussing
the security issues and related mitigations. Second, we have sent
notification emails to the administrators of the affected websites,
disclosing the vulnerabilities and the specific detection methodolo-
gies. According to the rank of vulnerable websites, we summarize
the related responses to responsible disclosure below:

Microsoft microsoft.com (6th in Tranco Top 1,000): Responded
that they have shared the report with the inner responsible team,
and they will take appropriate actions as needed to help their cus-
tomers be well protected.

AliBaBa taobao.com (23th in Tranco Top 1,000): Confirmed and
patched the discovered DoS attack vulnerability, assessed the vul-
nerability as Medium Critical, providing a vulnerability bounty of
about 100$.

Adobe adobe.com (65th in Tranco Top 1,000): Confirmed the vul-
nerability and discussed the scope of the attack. They responded
that they are evaluating the vulnerability internally and will provide
a fix for the vulnerability in the near future.

NetEase 163.com (187th in Tranco Top 1,000): Rated the vulnera-
bility as Medium Critical.

Internet’s Invisible Enemy: Detecting and Measuring Web Cache Poisoning in the Wild CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Yelp yelp.com (207th in Tranco Top 1,000): Thanked for the results
of this research and acknowledged the issues identified in this
paper. They will continue to monitor the subsequent impact of the
vulnerability and fix the issue when appropriate.

Mashable mashable.com (426th in Tranco Top 1,000): Confirmed
the vulnerability and highly praised the work, and suggested look-
ing deeper into the potential harm of the attack, such as using
the ‘X-Forwarded-Host’ header to discover more vulnerable assets
internally.

HuaWei huawei.com (537th in Tranco Top 1,000): Confirmed
this problem and agreed that it was caused by irregularities in the
Nginx cache configuration. They rated our reported vulnerability
as Medium Critical and awarded about 200$ for the vulnerability.

SAP sap.com (969th in Tranco Top 1,000): SAP has released the
fix for this issue, and they offer acknowledgment by publishing our
team information on its webpage.

Knowyourteam: They specifically thanked the researcher for
the vulnerability report and have started the vulnerability remedia-
tion process. Also added our team to the list of vulnerability-fixing
acknowledgments and gave some vulnerability bounty 100$.

Street Context: They rated the vulnerability found in this paper
as Medium Critical and awarded about 300$ for the vulnerability.

VidaXL: They thanked the work of this paper and considered it
valuable research. They evaluated our discovered vulnerabilities as
High Risk and gave a vulnerability reward of about 300$.

BlackFriday, Asana, YoYoGames, Ziff Davis, Nutanix, Star-
bucks, WP Engine: Acknowledged and thanked us for the vul-
nerability report and advised that “The issue has been identified
internally and is in the process of being fixed”.

7.2 Mitigation
WCP is a complex and severe security problem, it is not a vulnera-
bility within a single caching system, but rather the vulnerability of
parsing differences between multiple caching systems. As a result,
traditional static analysis and white-box testing techniques on a
single system are difficult to detect and eliminate the problem. A
recommended solution is to employ several methods together in
production environments to minimize the cache poisoning problem.

Add additional headers as the cache key: From our discoveries,
when exploiting headers that have not been implemented as the
cache keys within the caching systems, such as ‘X-HTTP-Method-
Override’ and ‘X-Forwarded-Host’, a successful web cache poisoning
(WCP) happens. Therefore, it is applicable and beneficial to enforce
these headers as the cache keys within the caching systems. With
this mitigation, even if the attacker has successfully poisoned the
cache with an error response, this poisoned cache is only private
to the specific request with the problematic headers. As a normal
request does not contain the problematic header, it will not hit the
poisoned cache thus invalidating the attack.

Adhere to the RFC specifications: Most vulnerabilities found by
the HCache are caused by the caching of error responses that are
maliciously triggered by attackers, while these caching behaviors
are implementation-specific and not specified by the related RFCs.
Therefore, the effective mitigation is to strictly follow the RFC
standards, only caching the error status codes that are allowed by

the RFCs, and returning other status codes directly for requests
that should not be cached.

Enhance exception handling at the web server : Based on our find-
ings, an attacker can proactively trigger error responses at the
website web server, which results in WCP. Thus, to avoid returning
an error response for malformed HTTP requests, we suggest the
website server enhance a good exception handling design, which
just ignores the problematic request headers and returns a benign
response instead, or directly returns an error code indicating that
the response should not be cached by any on-path cache servers.
Thus, normal users still obtain the correct response, invalidating
WCP.

Disable caching of dynamic resources: Web caching should only
be applied to accelerate static resources, not dynamically generated
pages. Therefore, caching should be disabled for resources that
need to be dynamically generated according to request parameters.
HCache has found that, although resources (such as CSS and JS)
are normally categorized as static resources, some websites gen-
erate these resources using dynamic templates, actually turning
these static-looking resources into dynamic resources. Hence, the
best way to fix this is to directly change these resources to static
resources. If this dynamic generation feature is essential for the
website operation, we suggest clearly indicating the dynamic nature
of these resources to disable the caching behavior. Besides, the web-
site can also add various XSS filters to proactively defend against
WCP resulting from the dynamically generated web content.

Reduce the caching time of error pages: The caching system can
also reduce the impact by only caching error response within a
short time, such as 1 second. This approach can proactively limit the
effective time of WCP and greatly increase the attacking difficulty.

7.3 Limitation
Due to the complexity of WCP and the scale of our measurements,
our work still has the following limitations, which can be further
optimized in future works.

Testing scope. Our research only analyzes individual websites
from the top 1,000 Tranco domains. However, our proposed tool
HCache is also applicable to wider measurement, which apparently
can further reveal the severe threat of WCP on the Internet.

Detection on caching behaviors. HCache detection presupposes
that the target caching system adopts relevant header identifiers
for cache operations. However, there are still some cache servers in
real web environments that do not use such identifiers. Therefore,
the websites covered by the tests in this chapter are a subset of
websites running cache servers in the real world.

Evaluation on web pages with crucial functionality. HCache does
not consider user permissions in detecting WCP. Commonly, web-
sites have service-critical or data-sensitive pages that are only ac-
cessible to users that require log in, while which are not included in
our work. We believe more severe threats can be discovered when
further works incorporate the detection of login-related web pages.

Measurements of poisoning techniques. Our work mainly focuses
on the well-known WCP that mostly threatens the Internet, thus
HCache’s request variant module is based on four types of variant
patterns defined by expert knowledge. Although our framework

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuejia Liang et al.

has attempted to include various attacking techniques as much as
possible, there may still be WCP that HCache does not cover.

7.4 Ethical Consideration
In this study, we have taken our uttermost care to avoid any ethical
concerns both in the design and implementation.

For security concerns, the exception requests generated by
our tests conform to the HTTP syntax specification and are only
likely to cause the web server to return an incorrect response and
then close the connection, without affecting the normal operation
of the server. We use cache buster to avoid the impact on normal
users; the request parameters of the test request are randomly
generated, and normal user requests will not hit the poisoned cache
because of the different cache key. In addition, our tests found that
most of error responses have much shorter cache times relative
to normal responses, and unlike an attacker continuously sending
attack requests to poison the cache, our experiments sent only one
attack request, thus the poisoned caches will not survive for more
than 10 minutes according to the cache time in all experiments.
Further, to ensure that the poisoned caches will not continue to
exist, we sent normal requests to each potentially poisoned site after
our experiments, to make sure that the caches had been refreshed
to normal responses. For performance concerns, we filtered a large
number of target URL links using URL similarity detection. We
strictly limit the request rate, a single URL to 5 requests per second,
which will not place an excessive performance load on the websites
and CDNs.

For privacy concerns, only URL information related to cache
poisoning was captured and analyzed, and no privacy data of the
target website was saved locally, nor was any content of the tar-
get website indexed and otherwise made public. In addition, we
use an HTTP header (User-Agent) embedded with our research
purpose and contact information during the scanning process. If
website administrators notice any adverse effects caused by the
automated scanning on their websites, they can timely contact us,
and we will promptly cease the automated scanning of the target
website. We strictly followed the principle of responsible disclosure
to report discovered vulnerabilities to affected websites, by actively
contacting through various channels such as email and third-party
security disclosure communities. The case mentioned in the article
has already been fixed.

8 RELATEDWORK
Our research focuses on web cache poisoning (WCP) caused by
non-cache keys in HTTP requests, and delves deep into various
details of actual poisoning attacks and exploits. In addition, there
are several other attacking tricks to perform WCP or to exploit
cache flaws for other purposes. Host-of-Trouble attack exploits
inconsistencies in the parsing of the host header in HTTP requests
between the cache server and the web server, to perform WCP and
WAF bypassing[1].

HTTP Desync Attack poisons the cache by smuggling an addi-
tional request to disrupt the responses with malicious payloads[14,
18, 20]. WCD tricks a web cache into erroneously storing sensitive
content, thereby making it widely accessible on the Internet[4, 24,
25].

Two detection tools are most relevant to the work in this paper.
One is Param Miner[15], designed by James Kettle, which is used
to scan whether some headers and parameters are included in
cache keys to detect potential WCP. Another one is Web Cache
Vulnerability Scanner[9], which summarizes some of the previously
proposed methods of WCP, and allows for the detection of known
attack methods. HCache works as a superset of these two tools,
it analyses the request line, request header, and request body of
an HTTP request to generate corresponding test cases that can
comprehensively test the different aspects of WCP.

Since James Kettle demonstrated the severity and prevalence of
request smuggling in 2019, researchers have come up with several
tools to detect attacks on request smuggling[2, 5, 29]. T-reqs is
a novel grammar-based differential fuzzer to test HTTP request
smuggling[12]. Frameshifter aim to discover the security impli-
cations of HTTP/2-to-HTTP/1 conversion anomalies[11]. Large-
scale measurements of web cache[27], HTTP(S)[3, 23], CDN[13]
e-mails[35] or other web attacks[25], provides insights into the
current security problems on the Internet, allowing us to better
address potential security risks. To our knowledge, our work is
the first large-scale examination of the WCP attack, revealing the
prevalence of this threat on the Internet.

In addition to WCP, cache servers, especially CDN, have other
security issues. Its working mechanisms can also bring WCP [1, 24],
DoS attacks[8], or other forms of attacks[7, 21, 22]. Compared to
the above research on "forwarding", our work focuses on "caching",
revealing the pervasive security risks posed by the inconsistent
processing of requests between websites and cache servers. Our
work highlights this widespread systemic problem, which can mo-
tivate cache vendors and webmasters to properly implement and
configure the caching, strictly adhering to HTTP standards specifi-
cations.

9 CONCLUSION
Web cache poisoning (WCP) has been a significant threat on the
Internet, however, it still lacks a global view of the severe impact at
scale. We have proposed a systematic measuring platform HCache,
which enables a large-scale evaluation of WCP threats on the real-
world Internet. Based on Tranco Top 1K domains and their sub-
domains, we have discovered more than 1,000 websites across 172
domains (17% of measured domains) with WCP vulnerabilities. Our
work first reveals that WCP threat is a widespread security issue on
the Internet, and discloses that WCP threat still exists in the new
incoming protocols. We have responsibly reported the vulnerabili-
ties to the affected websites, receiving acknowledgments and over
$1,000 bug bounties from world-famous companies such as Adobe,
Alibaba, Huawei, and Microsoft.

ACKNOWLEDGMENTS
We sincerely thank all anonymous reviewers and our shepherd for
their insightful and constructive feedback to improve the paper.
This work is supported by the National Natural Science Foundation
of China (grant #62272265).

REFERENCES
[1] Jianjun Chen, Jian Jiang, Haixin Duan, Nicholas Weaver, Tao Wan, and Vern

Paxson. Host of troubles: Multiple host ambiguities in http implementations. In

Internet’s Invisible Enemy: Detecting and Measuring Web Cache Poisoning in the Wild CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 1516–1527, 2016.

[2] Evan Custodio. Smuggler. https://github.com/defparam/smuggler, 2020.
[3] Zakir Durumeric, James Kasten, Michael Bailey, and J Alex Halderman. Analysis

of the https certificate ecosystem. In Proceedings of the 2013 conference on Internet
measurement conference, pages 291–304, 2013.

[4] Omer Gil. Web cache deception attack. Black Hat USA, 2017, 2017.
[5] Mattias Grenfeldt, Asta Olofsson, Viktor Engström, and Robert Lagerström. At-

tacking websites using http request smuggling: empirical testing of servers and
proxies. In 2021 IEEE 25th International Enterprise Distributed Object Computing
Conference (EDOC), pages 173–181. IEEE, 2021.

[6] Run Guo, Jianjun Chen, Baojun Liu, Jia Zhang, Chao Zhang, Haixin Duan, Tao
Wan, Jian Jiang, Shuang Hao, and Yaoqi Jia. Abusing cdns for fun and profit:
Security issues in cdns’ origin validation. In 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS), pages 1–10. IEEE, 2018.

[7] Run Guo, Jianjun Chen, Yihang Wang, Keran Mu, Baojun Liu, Xiang Li, Chao
Zhang, Haixin Duan, and Jianping Wu. Temporal {CDN-Convex} lens: A {CDN-
Assisted} practical pulsing {DDoS} attack. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 6185–6202, 2023.

[8] Run Guo, Weizhong Li, Baojun Liu, Shuang Hao, Jia Zhang, Haixin Duan, Kaiwen
Sheng, Jianjun Chen, and Ying Liu. Cdn judo: Breaking the cdn dos protection
with itself. In NDSS, 2020.

[9] Hackmanit. Web cache vulnerability scanner. https://github.com/Hackmanit/W
eb-Cache-Vulnerability-Scanner.

[10] Apache http server project. caching guide. https://httpd.apache.org/docs/2.4/ca
ching.html.

[11] Bahruz Jabiyev, Steven Sprecher, Anthony Gavazzi, Tommaso Innocenti, Kaan
Onarlioglu, and Engin Kirda. {FRAMESHIFTER}:fram security implications of
{HTTP/2-to-HTTP/1} conversion anomalies. In 31st USENIX Security Symposium
(USENIX Security 22), pages 1061–1075, 2022.

[12] Bahruz Jabiyev, Steven Sprecher, Kaan Onarlioglu, and Engin Kirda. T-reqs: Http
request smuggling with differential fuzzing. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages 1805–1820,
2021.

[13] Lin Jin, Shuai Hao, HainingWang, and Chase Cotton. Unveil the hidden presence:
Characterizing the backend interface of content delivery networks. In 2019 IEEE
27th International Conference on Network Protocols (ICNP), pages 1–11. IEEE, 2019.

[14] James Kettle. Http/2: The sequel is always worse. https://portswigger.net/resear
ch/http2.

[15] James Kettle. Parem miner. https://github.com/PortSwigger/param-miner.
[16] James Kettle. Practical web cache poisoning: Redefining ’unexploitable’. https:

//portswigger.net/research/practical-web-cache-poisoning.
[17] James Kettle. Web cache entanglement: Novel pathways to poisoning. https:

//portswigger.net/research/web-cache-entanglement.

[18] James Kettle. Http desync attacks: Smashing into the cell next door. Black Hat
USA, 2019.

[19] Amid Klein. Divide and conquer. HTTP Response Splitting, Web Cache Poisoning
Attacks and Related Topics, Sanctum whitepaper, 2004.

[20] Amit Klein. Http request smuggling in 2020–new variants, new defenses and
new challenges. Black Hat Briefings USA, 8, 2020.

[21] Weizhong Li, Kaiwen Shen, Run Guo, Baojun Liu, Jia Zhang, Haixin Duan, Shuang
Hao, Xiarun Chen, and Yao Wang. Cdn backfired: amplification attacks based on
http range requests. In 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 14–25. IEEE, 2020.

[22] Jinjin Liang, Jian Jiang, Haixin Duan, Kang Li, Tao Wan, and Jianping Wu. When
https meets cdn: A case of authentication in delegated service. In 2014 IEEE
Symposium on Security and Privacy, pages 67–82. IEEE, 2014.

[23] Abner Mendoza, Phakpoom Chinprutthiwong, and Guofei Gu. Uncovering http
header inconsistencies and the impact on desktop/mobile websites. In Proceedings
of the 2018 World Wide Web Conference, pages 247–256, 2018.

[24] Seyed Ali Mirheidari, Sajjad Arshad, Kaan Onarlioglu, Bruno Crispo, Engin Kirda,
and William Robertson. Cached and confused: Web cache deception in the wild.
In 29th USENIX Security Symposium (USENIX Security 20), pages 665–682, 2020.

[25] Seyed Ali Mirheidari, Matteo Golinelli, Kaan Onarlioglu, Engin Kirda, and Bruno
Crispo. Web cache deception escalates! In 31st USENIX Security Symposium
(USENIX Security 22), pages 179–196, 2022.

[26] Nginx. Nginx content caching. https://docs.nginx.com/nginx/admin-guide/cont
ent-cache/content-caching/.

[27] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Federrath. Mind the cache: large-
scale explorative study of web caching. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, pages 2497–2506, 2019.

[28] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Federrath. Your cache has fallen:
Cache-poisoned denial-of-service attack. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1915–1936, 2019.

[29] PortSwigger. Exploiting http request smuggling vulnerabilities. https://portswig
ger.net/web-security/request-smuggling/exploiting, 2020.

[30] Mike Reddy and Graham P Fletcher. An adaptive mechanism for web browser
cache management. IEEE Internet Computing, 2(1):78–81, 1998.

[31] Caitlin Sadowski and Greg Levin. Simhash: Hash-based similarity detection,
2007.

[32] Squid. Squid: Optimising web delivery. http://www.squid-cache.org/.
[33] Varnish. Varnish http cache. https://varnish-cache.org/.
[34] w3techs. Cloudflare vs. akamai vs. fastly usage statistics. https://w3techs.com/te

chnologies/comparison/cn-akamai,cn-cloudflare,cn-fastly.
[35] Chuhan Wang, Kaiwen Shen, Minglei Guo, Yuxuan Zhao, Mingming Zhang,

Jianjun Chen, Baojun Liu, Xiaofeng Zheng, Haixin Duan, Yanzhong Lin, et al. A
large-scale and longitudinal measurement study of {DKIM} deployment. In 31st
USENIX Security Symposium (USENIX Security 22), pages 1185–1201, 2022.

[36] WordPress. Wp super cache. https://wordpress.org/plugins/wp-super-cache/.

https://github.com/defparam/smuggler
https://github.com/Hackmanit/Web-Cache-Vulnerability-Scanner
https://github.com/Hackmanit/Web-Cache-Vulnerability-Scanner
https://httpd.apache.org/docs/2.4/caching.html
https://httpd.apache.org/docs/2.4/caching.html
https://portswigger.net/research/http2
https://portswigger.net/research/http2
https://github.com/PortSwigger/param-miner
https://portswigger.net/research/practical-web-cache-poisoning
https://portswigger.net/research/practical-web-cache-poisoning
https://portswigger.net/research/web-cache-entanglement
https://portswigger.net/research/web-cache-entanglement
https://docs.nginx.com/nginx/admin-guide/content-cache/content-caching/
https://docs.nginx.com/nginx/admin-guide/content-cache/content-caching/
https://portswigger.net/web-security/request-smuggling/exploiting
https://portswigger.net/web-security/request-smuggling/exploiting
http://www.squid-cache.org/
https://varnish-cache.org/
https://w3techs.com/technologies/comparison/cn-akamai,cn-cloudflare,cn-fastly
https://w3techs.com/technologies/comparison/cn-akamai,cn-cloudflare,cn-fastly
https://wordpress.org/plugins/wp-super-cache/

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuejia Liang et al.

A CACHE IDENTIFICATION FIELD

Table 6: Common caching status fields used by major service vendors

Cache Service/Software Response Header Hit Miss

Azure X-Cache TCP_HIT TCP_MISS
Fastly X-Cache HIT MISS
Akamai X-Cache, Server-Timing desc=HIT desc=MISS
CDN77 X-Cache, X-77-Cache HIT MISS
CloudFront X-Cache Hit from cloudfront Miss from cloudfront
UDomain X-Cache-Status HIT MISS
KeyCDN X-Cache HIT MISS
Cloudflare CF-Cache-Status HIT MISS
GCoreLabs Cache HIT MISS
ChinaCache X-cc-via *[H,*] *[M,*]
Github Pages X-Cache HIT MISS
Google Cloud cdn_cache_status hit mis
Incapsula CDN X-Iinfo ...0CNN... ...PNNN...
AlibabaCloud X-Cache HIT TCP_IMS_HIT MISS TCP_MISS
Tencent Cloud X-Cache-Lookup Hit From * / Cache Hit Cache Miss
HUAWEI CLOUD X-Cache-Lookup Hit From * Miss From *
Baidu AI Cloud CDN X-Cache-Status HIT MISS
Apache Traffic Server X-Cache HIT MISS
Squid X-Cache Hit From * Miss From *
Varnish X-Cache HIT MISS
Nginx Cache_status, X-Proxy-Cache HIT MISS
Apache X-Cache HIT MISS
Rack Cache X-Rack-Cache Hit Fresh/Miss

Internet’s Invisible Enemy: Detecting and Measuring Web Cache Poisoning in the Wild CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

B KNOWN ATTACK VECTORS

Table 7: Examples of known attack vectors discovered by HCache

Type Common Attack payloads Vulnerable Websites*

HTTP Header Oversize

taobao.com
X-Oversized-Header-[1-N]: nvidia.com
Big-Value-000000000000...000000000000 mail.ru

dropbox.com

HTTP Method Override

X-HTTP-Method: PUT house.gov
X-HTTP-Method: TRACE bmw.com
X-Method-Override: TRACE mailchimp.com
X-HTTP-Method-Override: POST huawei.com
X-HTTP-Method-Override: DELETE microsoft.com

HTTP Meta Character
Header\uffff:1234 aadcoinst.com
X-Metachar-Header: \0 house.gov
X-Metachar-Header: \b house.gov

Fat GET

GET /?id=1 HTTP/1.1 nih.gov
X-HTTP-Method-Override: POST sina.com.cn
... gouvernement.lu
attack=<script>alert(1);</script> adobe.com

HTTP Parameters
/app?config=<script>alert(1);</script>// ign.com
/base.css?exp=<script>alert(1);<script> hotelscombined.com
/index.js?utm_medium=x;callback=alert(1)// cdlvr.net

HTTP Forwarded Header

Host: example.com:1337 grab.careers
Forwarded: Host=attack.com bing.com
X-Forwarded-Host: attack.com blackfriday.com
X-Forwarded-Port: 1337 yoyogames.com

Blacklist

Referer: spam.com yelp.com
Referer: <script>alert(1)</script> alipayobjects.com
Any-Header:.burpcollaborator.net salesforce.com
User-Agent: sqlmap/1.3.11#stable jfrogchina.com
User-Agent: Nmap Scripting Engine alipay.com

*: The vulnerable websites in the table only show the base domain. The subdomains and paths were
redacted for ethical considerations.

	Abstract
	1 Introduction
	2 Background
	2.1 Web Cache
	2.2 Web Cache Attack
	2.3 Limitation of Existing Research

	3 Overview
	3.1 Threat Model
	3.2 Methodology

	4 HCache: Design and Implementation
	4.1 Workflow
	4.2 Stage A. Preprocessing
	4.3 Stage B. Test Case Generation
	4.4 Stage C. Cache Poisoning Detection

	5 Measurement Study and Findings
	5.1 Data Collection
	5.2 Cache Key Detection
	5.3 Overview
	5.4 Findings

	6 Threat Analysis
	7 Discussion
	7.1 Responsible Disclosure
	7.2 Mitigation
	7.3 Limitation
	7.4 Ethical Consideration

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Cache Identification Field
	B known attack vectors

